FIRST RECORD OF LILIOCERIS LILII (COLEOPTERA: CHRYSMOMELIDAE) EGGS IN A WILD POPULATION OF STREPTOPUS AMPLEXIFOLIUS (LILIACEAE)

C. D. KEALEY*, N. CAPPUCCINO¹, P. G. MASON²
Institute of Environmental Science, Carleton University
Ottawa, ON K1S 5B6
email: ckealey08@gmail.com

Scientific Note J. ent. Soc. Ont. 144: 131–134

Lilioceris lilii (Scopoli) (Coleoptera: Chrysomelidae), the Lily Leaf Beetle, is an invasive European species first found at Montreal, Canada, in the 1940s (Gold et al. 2001). It is a serious pest of cultivated Lilium spp. and Fritillaria spp. (Liliaceae) and has spread across southern Canada and northeastern United States (LeSage 1983; Gold et al. 2001). The beetle also poses a threat to native lilies in Ontario and Quebec, including Canada Lily, Lilium canadense L., and Wood Lily, Lilium philadelphicum L. (Ernst et al. 2007; Bouchard et al. 2008). In fact, in Ontario and Quebec eight out of 20 wild populations of L. canadense were infested with L. lilii (Bouchard et al. 2008). There are also records of L. lilii adults feeding on plants in other liliaceous genera, e.g., Polygonatum (Temperé 1926; Fox Wilson 1942), Streptopus (Ernst 2007), as well as genera in other families, e.g., Solanum (Solanaceae) (Temperé 1926).

Kealey (2013) investigated Claspleaf Twistedstalk, Streptopus amplexifolius (L.) DC. (Liliaceae), as a potential novel host of L. lilii. Streptopus amplexifolius occurs in rich moist coniferous and deciduous woods in all provinces and territories in Canada and all adjacent states of the USA (Anonymous 2013). This native plant flowers from late spring until mid-summer. Streptopus amplexifolius leaves were offered to L. lilii larvae to determine survivorship and development time. Leaves of S. amplexifolius were collected from a wild population growing in Gatineau Park, Quebec, Canada (45.491°N 75.863°W). Infestations of L. lilii were recently reported in urban areas south of Gatineau Park, but no known L. lilii populations are established within the Park nor on any wild populations of S. amplexifolius (Cappuccino 2013).

During a routine collection of S. amplexifolius plants for laboratory tests on June 25, 2013, a row of three L. lilii eggs (Fig. 1) was discovered on the underside of a wild S. amplexifolius leaf. Surrounding plants were searched for more eggs, though none were discovered, nor was any obvious feeding damage by adults or larvae observed. The S. amplexifolius leaf with the L. lilii egg mass was carefully removed from the stem and transported to the laboratory. The eggs were left undisturbed, and the leaf was placed on

* Author to whom all correspondence should be addressed.
¹Department of Biology, Carleton University, Ottawa, ON
²Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON

Published December 2013
moist filter paper in a 60 x 15 mm Petri dish maintained at 23°C, 70% relative humidity and
16:8 L:D, and monitored for larval hatch. The three eggs hatched on June 30th or July 1st.
Two first instar larvae were still alive on July 2nd and feeding damage was observed on the
leaf whereas the third larva was dead and had not fed. Subsequently both surviving larvae
died. The cause of death is unclear.

The eggs (Fig. 1), and hatched larvae (Fig. 2), found in Gatineau Park shared all of
the characteristics of L. lilii. Lilioceris lilii egg masses are distinct: they are laid parallel to
leaf veins, in a linear arrangement of 2–16 eggs on the underside of host leaves (Salisbury
2008); eggs are bright red or orange in color, though darken when near hatching, and are
covered in a sticky orange layer; individual eggs are 1.0 x 0.5 mm, and masses are laid
from March–September (Haye and Kenis 2004); and Lilioceris lilii larvae are dirty-orange
in color, with a dark head and legs. First instar larvae (Fig. 2) have head capsule widths
between 0.36–0.55 mm, and a distinct egg bursting spine is located on the first abdominal
segment (Livingston 1996; Cox 1994). Larvae also carry a viscous fecal shield of their own
excrement on their backs.

Eggs of other genera within the Criocerinae subfamily may be confused with L.
lilii eggs. Hosts of Lema spp. belong to the distantly related plant families Solanaceae
and Asteraceae, and Oulema spp. are on species of Asteraceae, Commelinaceae and
Poaceae. The only species of Neolema that occurs in Canada, N. cordata White, occurs on
Commelinaceae spp. Two species of Crioceris closely resemble L. lilii in the larval stage;
however, both are closely associated with Asparagales and have distinctly different egg
placement and color (White 1993).

This observation marks the first record of L. lilii ovipositing on S. amplexifolius
in nature and this is the first plant species outside the genera Lilium, Fritillaria, and
Cardocrinum (the known host genera for this beetle) where both oviposition in nature
and successful larval development in the lab have been observed (see Salisbury 2008).
Although Ernst et al. (2007) found that larval performance was poor on S. amplexifolius
leaves in laboratory tests, Kealey (2013) confirmed that almost half (42%) of L. lilii larvae
can successfully develop to adults on S. amplexifolius. This record is also only the second
oviposition record for L. lilii in North America on a host plant in nature outside of urban
areas where development might also be occasionally possible. The observation reported here
is likely the result of an adult that emigrated from an urban area. However, it is unknown
what the potential is for colonization by L. lilii of novel host plants, such as S. amplexifolius,
in non-urban areas. Among the factors that might encourage a more permanent move to S.
aplexifolius by L. lilii is the enemy-free-space hypothesis in which the herbivore escapes
its specialized parasitoid by feeding on a novel host plant (Brown et al. 1995; Rossbach et
al. 2006). Further study would help to establish if such events are rare or the first step in
adaptation by an invasive alien species to a novel host.
First record of *L. lilii* in a wild population of *S. amplexifolius*

FIGURE 1. *Lilioceris lilii* eggs on *Streptopus amplexifolius* leaf from Gatineau Park, Quebec.

FIGURE 2. *Lilioceris lilii* first instar larva on a *Streptopus amplexifolius* leaf collected from Gatineau Park, Quebec. This picture was taken soon after larval death and shows A) feeding damage B) egg bursters and C) fecal shield characteristic of the species.
References

Temperé, G. 1927. Régime alimentaire anormal de *Crioceris lilii* (Coleoptera Chrysomelidae). *Procès Verbaux de la Société Linnéenne de Bordeaux* (1926) **78**: 131–133.