The visceral retia mirabilia of tuna and sharks: an annotated translation and discussion of the Eschricht & Müller 1835 paper and related papers

by

Douglas S. Fudge & E. Don Stevens

1996
Axelrod Institute of Ichthyology, University of Guelph, Guelph, Ontario, Canada
A wonderful network

A wonderful network of people - tuna biologists, librarians, translators, photographers, historians, and publishers. A wonderful network of historical records, anatomical reconstructions, and new observations. A remarkable example of true scholarship seldom seen in current science.

It is with great pleasure that we publish this review by Don Stevens and his student Doug Judge. Their painstaking attention to detail shows in every facet of the work, from accuracy of translation of the original German language articles, to verification of the first published citations, to exquisite photographs and illustrations of fresh preparations that reconstruct the key points of those first studies. This is a review in the true, scholarly sense of that term - and so of course it leads to new insights, new interpretations and increased understanding.

Almost every biology textbook states that tunas and some sharks have a limited ability to regulate the temperature of parts of their bodies above ambient. The conception usually appears to be grudging, perhaps in light of the thinly disguised dogma that all birds and mammals are "true" homeotherms - as befits their position on the pinnacle of the scala natura. Shades of Aristotle! With the notable exception of the most recent edition of a major ichthyological textbook, the true wonders of this property of tunas and some sharks has been sadly overlooked. At best it was a curiosity to tip up unwary students on comprehensive qualifying examinations.

In 1835 Charles Darwin was still voyaging on the Beagle, and Victoria was not yet Queen of England. In the United States Andrew Jackson was President and their Civil War was still 26 years in the future. Canada would not become a country for another 32 years. It would be 18 years before the American Admiral Perry and his Black Ships forced their way into Japan. Germany was a confederation of states under Austria.

But in 1835 the seminal papers on_\textit{zebra mirobulia}_2 in tunas and sharks were published. It is a testament to the standards of those papers that we can continue to learn from them - especially from the superb illustrations.

The oddest part of this review is the knowledge that it may be almost too late. Don and his co-workers required a special government permit to collect the four bluefin tuna used in their dissections. It is now an endangered species. Pursued since at least the time of the Phoenicians, the prized catch of trophy anglers, and eagerly purchased at astronomical prices for sashimi, the giant bluefin faces an uncertain future. Some might argue, however, that at prices as high as US $50 000 for a single fish their fate is inevitable.

The large sharks may fare no better. They are even less well-known than the tunas, less likely to attract the attention directed toward large charismatic vertebrates such as whales, and subjected to largely unregulated harvest for fins, cartilage, and other trophies.

With this issue of Guelph ichthyology _Reviews_ we continue our efforts to bring together in the Axelrod Lecture of ichthyology the full range of interests in scholarly activities in ichthyology. Those who would judge the worth of science often place a great deal of emphasis on the immediacy of its impact in citations. Here we see the value of ex-silent research that can be timeless and extend far beyond the technical and conceptual limits of the originators. We can also see that without an awareness and understanding of the history of our discipline we can be little more than technicians. How will our science be judged 150 years from now?

Guelph, 2 February 1996

David L. G. Noakes
The visceral retia mirabilia of tuna and sharks: an annotated translation and discussion of the Eschricht & Müller 1835 paper and related papers

Douglas S. Fudge & E. Don Stevens
Axelrod Institute of Ichthyology and Department of Zoology, University of Guelph, Guelph, Ontario N1G 2W1, Canada

CONTENTS

Synopsis ... 3
Prelude ... 4
1. Introduction .. 5
2. Reader’s guide to the Eschricht & Müller translations
 2.1 Brief notes on Eschricht & Müller ... 7
 2.2 Miscellaneous notes on the translation ... 7
 2.3 Taxonomic guide .. 7
3. An annotated translation of D.F. Eschricht and J. Müller’s “On the arterial and venous retia mirabilia of the liver and a peculiar structure of that organ in the tuna, Thunnus thynnus.” Translated with the assistance of Elisabeth Niimi. .. 11
 I. Purpose of the study ... 11
 II. General description of the digestive system in T. thynnus ... 13
 III. Radiating structure of the liver veins. Retia mirabilia of the portal vein system 13
 IV. Retia of the arteries of the digestive system. Relationship of these to the retia of the portal vein and to the liver veins .. 15
 V. Characteristics of the other visceral organs and vessels ... 18
 VI. Retia in other fishes ... 19
 VII. Significance of the retia .. 20
 VIII. Analogous of the peculiar structure of the liver vessels .. 23
4. An annotated translation of D.F. Eschricht and I. Müller’s supplement to the article on the retia mirabilia on the liver of the tuna. “On the retia mirabilia of the digestive system of Squalus vulpes L., Alopecias vulpes Nob.” Translated with the assistance of Elisabeth Niimi. ... 25
5. Plates from the Eschricht & Müller paper and a supplementary figure 27
6. Supplementary figures ... 35

1
Fig. 1. Schematic of bluefin viscera and gills showing the five major *retia* and their connections to the liver and visceral organs. The two colors represent relative temperature, with blue denoting cold and red denoting warm. Not only do the *retia* thermally isolate the viscera from the relatively cold heart, kidneys and gills, the three liver lobes form a cap over the viscera. This arrangement most likely contributes further to the insulation of the viscera from the gills. Note that the diagram includes our hypothesis that the radiating liver vessels act as countercurrent heat exchangers, resulting in a temperature gradient along the liver. The locations of some of the organs have been distorted so that all of the *retia* and their connections can be seen. The middle liver lobe has been made semi-transparent so that the *rete* connected to it and the right liver lobe can be seen. For a more realistic view of the visceral anatomy, see Plate III, Fig. 1 from the original text and see Fig. 9 for a photograph of this region in situ. GL = gill, ST = stomach, K = kidney, CA = caecum, RL = right liver lobe, ML = middle liver lobe, LL = left liver lobe, V = ventricle, SL = spleen, IN = intestine, S = *rete* which serves right ventral portion of stomach, SIC = *rete* which serves the spleen, the intestine and part of the caecum, CS = *rete* which serves both the stomach and the caecum, C = *rete* which serves the caecum, SP = *rete* which serves the left ventral portion of the stomach and attaches near the pylorus.
Synopsis

The focus of this volume is an annotated translation of the classic work by J. Müller and D.F. Eschricht on the visceral anatomy of the bluefin tuna, *Thunnus thynnus*, published in 1835. This text, with its outstanding figures, is to this day the definitive work on the anatomy of the bluefin viscera and especially on the circulation to and from the viscera. In addition, the text is historically important in that it represents the first comprehensive description of visceral *rete mirabile* in a fish. In this work, Eschricht & Müller meticulously elucidate the pattern of blood flow to, within, and from the viscera. In addition they describe and speculate about the function of such "peculiar" anatomical structures such as the visceral *rete mirabile*, the "radiating liver vessels" and the unusually large visceral nerves seen in this species. We have annotated the translation in order to connect the findings of Eschricht & Müller with our current understanding of warm fish. Eschricht & Müller published a supplement to the tuna article in which they describe the visceral anatomy of the common thresher shark, *Alopias vulpinus*. We provide an annotated translation of this text as well. The main purpose of the supplement is that the vascular arrangement of the thresher viscera is completely analogous to that in *T. thynnus* and distinct from those found in other warm water sharks, such as *Lamna nasus*, implying that endothermy has evolved independently at least twice within elasmobranchs. Finally, to round out the historical aspect of this volume, we include two papers and their abstracts by John Davy, who is credited with the first body temperature measurements of warm fish. Eschricht & Müller were aware of Davy's measurements and discuss them briefly in their paper on tuna visceral anatomy. We also include plates from the 1923 paper by Kishinouye and some color photographs of the visceral *rete* from our dissections. The last two sections of this volume are facsimiles of the two texts by Eschricht & Müller as they appeared in their original form.

Key words:
Preparing a translation of the Eschricht & Müller text for a modern audience required a lot of background and supporting research. Not surprisingly, by the end of the translation, we found that we were quite familiar with the authors and the scientific context in which they were working. We realized that this knowledge was not only helpful for an accurate translation, but it also put us in a good position to help document the very beginnings of the study of warm fishes. To this end, we have included other documents in this volume that are relevant to the origins of warm fish biology. The first of these documents is the supplement to the tuna article, which is primarily concerned with the vascular anatomy of the thresher shark. We also have included two papers and their abstracts by John Davy. The first article by Davy, entitled "On the temperature of some fishes of the genus Thunnus", includes the first mention in the scientific literature that tunas are warm-blooded. Of course the translation of the Eschricht & Müller work on the visceral anatomy of the bluefin tuna is the centerpiece of this volume. However, we hope that the inclusion of the supplementary texts will make this volume more than just a revival of a classic anatomical study. We hope it will shed some light on how the study of warm fishes got its start.
1. Introduction

The fact that some scorpions and sharks are warmer than the water they inhabit has been of considerable interest to comparative physiologists for many years. Research in this area could be classified as being guided by four questions.

(1) How warm are warm fishes?
(2) How do warm fishes generate and maintain a elevated temperature?
(3) What adaptive advantage accrue to fishes with high body temperatures?
(4) How did endothermy evolve in fishes?

The articles selected for this volume are historically important because they represent the first attempts to answer the first two questions. The study of the biology of warm fishes got its start in 1835 in Europe, when two important papers were published, one by an Englishman by the name of John Davy and the other by a pair of Germans, Johannes Müller and F.E. Eschricht. In the paper entitled "On the temperature of some fishes of the genus Thynnus," Davy presents the first measurements of body temperatures of warm fishes (in this case tuna). Because of these measurements, Davy is credited as being the first to describe endothermy in fishes. His work could be considered the first attempt to answer the first question in the above list. Shortly after the publication of Davy's work, Eschricht & Müller published an article entitled "On the arterial and venous rete marathus of the liver and a peculiar structure of that organ in the tuna, Thynnus vulgaris." In this work, Eschricht & Müller describe the visceral anatomy of the bluefin tuna, paying special attention to the vascular rete which we now know to be adaptations for endothermy. Although Eschricht & Müller were unaware of the significance of their findings, their work could be considered the first which contributed to answering the second question in the above list, the question of mechanism.

Although Eschricht & Müller never fully arrived at the connection between the presence of rete and endothermy, they certainly struggled over what the function of the visceral rete might be. The function we now ascribe to these structures (counter-current heat exchange) would not be elucidated for more than a century, but it is rather clear from the text that Eschricht & Müller were very close to making a connection between the warm nature of these fish and their "peculiar" vascular anatomy. Müller says in section VII, "Perhaps the main reason for the peculiar (elavated) temperature of tunas lies in the rete." Later in the same section, he reasons that if there is some functional relationship between the possession of rete and elevated body temperature, then measurements of the body temperature of the porbeagle shark, Lamna nasus (which they knew also possess vasculat rete) should help refute or support this hypothesis: "On observations about the temperature of (the porbeagle) may become just as important." Unfortunately for them, there were no measurements of porbeagle body temperature available at that time.

Even almost 90 years later, in 1923, when R.H. Barnes published his paper, "Some peculiarities of the blood-vascular system of the porbeagle shark," the function of visceral rete was still unknown. As we see in the following passage, Barnes almost stumble on a fruitful line of reasoning, but then abandons it, much like Eschricht & Müller, for a lack of basic information.

"If the rete in Lamna are modifications for this purpose, as seems likely, one might hope to find indications of some special life habits to account for the need of them. Such, however, is apparently not the case, for this shark, so far as my information goes, presents no strongly marked peculiarities of habit. It is a pelagic shark of very powerful build and extremely active mode of life, though no more active than other genera in which no rete occur. Barnes certainly not at a loss for hypotheses to explain the rete function, but never hits on the idea of heat transfer. Of course, it is understandable that this explanation would not be available to him considering the fact that no one knew at the time that porbeagle are endothermic. Not until Kamakichi Kishinouye published his "Comparative study of scromboid fish" in 1923, was the matter set on the right track. In this work, Kishinouye for the first time recognizes a firm connection between rete and elevated body temperatures: The higher temperature of the body than the surrounding water, and consequently great activity of fishes of the Pleistocen is undoubtedly due to the peculiar circulatory systems above described. Subsequent developments with regard to the elucidation of the mechanism and advantages of counter-current heat exchange is another story all together. Not only is this work by Eschricht & Müller historically interesting, but it also continues to have real scientific value. Of course the anatomical descriptions are useful and the plates are superb, but Eschricht & Müller also have unwittingly catalogued a fascinating example of co-evolutionary evolution in excellent detail. There are two structures which Eschricht & Müller find peculiar about the visceral vasculature of the bluefin tuna. The first is the visceral rete and the second is the "radiating structure of the liver vessels." Although they have no compelling hypotheses to explain the existence of either of these structures in question, they do what any good comparative anatomist would; they find similar structures in other animals. The rational is that by comparing the physiology, lifestyle and behavior of the two species, the function of the structure in question may become clear. Unfortunately, their comparisons were fruitless at the time. Fortunately for us, Eschricht & Müller seem incapable of
omitting even the most seemingly insignificant detail, and they include those descriptions of analogous structures in spite of their apparent lack of utility in explaining their function.

In the case of the visceral reis they observe in the tuna, Eschricht & Muller are reminded of the peculiar vascular structures found in the visceras of the porbeagle. Armed with the benefits of 20/20 hindsight, we see the innocent wisdom in this comparison, because we know that the visceral reis of the porbeagle also act as countercurrent heat exchangers and help prevent heat loss through the gills. Although they are completely ignorant of the actual function of the visceral reis in both species, they go on to point out a distinction between the two systems that we can now see has important thermal consequences. The distinction is the position of the reis relative to the liver. In the tuna, the reis are located between the liver and the organs they serve, such as the stomach, caecum, spleen, and intestine. The consequence of this is that the liver does not enjoy the benefits of the reis, because it is outside the warm circuit and defined by them. In the porbeagle, however, the reis are located on the other side of the liver, between the liver and the heart. The consequence of this arrangement is that the liver benefits from the presence of the reis, because it is included within the warm vascular circuit defined by them. Indeed, temperature measurements of various visceral organs in the tuna and porbeagle show that the liver of the tuna is colder relative to the other visceral organs served by the reis (Carey et al. 1984), whereas the liver of the porbeagle is about the same temperature as the other visceral organs (Carey et al. 1981).

In the case of the radiating structure of the liver vessels, Eschricht & Muller zero in on another excellent choice for comparison. In the original text, they claim that they could find this structure in only one other species. Unfortunately, at the time they don't know exactly which species it is, because the liver on which the radiating vessels were discovered was found in a jar separate from the rest of the body. Here the reader is subjected to a blank-slate assumption in which the authors try to figure out to whom the liver belongs. Fortunately, the issue is resolved in a supplement to the text which we also have translated and included. We are told (after more explanations of exactly how they reached their conclusion) that the liver in question belongs to the common flounder shark, Alopias vulpinus. What makes this text fascinating is the revelation that the thresher possesses not only a radiating structure of the liver, but visceral reis as well. Perhaps even more interesting is the fact that the visceral reis of the thresher are completely analogous to those in the bluenfish in terms of their position relative to the liver. Without knowing it, through their fine descriptions of the vascular anatomy of the bluenfish, the porbeagle, and the thresher, Eschricht & Muller present a rather detailed account of three convergent vascular systems that could support visceral endothermy. See Fig. 2 and 3 for a schematic comparison of the visceral circulation in these three species.

In their attempts to find analogous structures to the reis and the radiating liver vessels of the tuna, Eschricht & Muller illustrate three separate instances of visceral endothermy. Astute as their observations are, they fail to realize an important pattern they uncover. The reason they examine a thresher shark at all is to find out if the liver in question (the one with the radiating liver vessels) belongs to it or to a hammerhead shark. It turns out that the liver belongs to the thresher, but it also turns out that the thresher possesses visceral reis (the opposite claim is made in the tuna paper). Not only does it have visceral reis, but they are located between the liver and the digestive organs, as in the bluenfish, which we know also displays the radiating liver vessels. One might ask how the radiating fins fit into this story, being a warm fish with a warm liver. Eschricht & Muller mention that the porbeagle liver does not display the radiating vessels. It seems that the radiating vessels are present only when the liver is not served by the main heat exchangers.

These observations of the liver vasculature have led us into a whole new line of inquiry. We feel strongly that there must be some functional similarity to a structure (the radiating liver vessels) which has evolved in two distinctly related lines (the tuna and the elasmobranchs) that have converged on similar, high energy lifestyles. Our current hypothesis is that these peculiar vessels act as a crude rei which helps to conserve some of the metabolic heat produced in the liver. We are led to this hypothesis by the fact that this structure is shared by warm fishes whose livers are not kept warm by the main visceral reis. In addition, a close look at these vessels reveals that they are not all that different in structure from the main visceral reis (see Fig. 14). Our future research aims to determine the capacity for countercurrent heat exchange of these structures, as well as to find examples in other species which will either support or refute our hypothesis.

There is one other line of questioning for which this text has been invaluable. The question is whether bluenfish tuner are capable of bypassing their visceral reis, which would presumably benefit them with greater thermoregulatory flexibility. In an anatomical study of the porbeagle visceras, Carey et al. (1981) showed that this shark possesses vessels which most likely act as bypasses of the visceral reis. In trying to determine whether bluenfish possess analogous structures, we found the Eschricht & Muller text to be a good place to start. It is a testimony to the careful technique and powerful observational skills of both Eschricht & Muller that although neither of them made their observations with the bypass question in mind, we still found their descriptions useful to this end. We have indicated with redlines those places in the text where their observations suggest that bluenfish, unlike the porbeagle, are incapable of bypassing their visceral reis. We will explore the validity and implications of these findings in a subsequent publication.

Every time we revisit the Eschricht & Muller texts, we are surprised by how much relevance they hold for our current research. Although Eschricht & Muller operated in a pre-Darwinian framework, their assumptions about the connections between form and function led them to proceed much as modern comparative anatomists would. The result of their labors is an anatomical study of stunning relevance and it has been an honor to formally reintroduce them to the scientific community. We hope the reader will find these texts as compelling and useful as we have.
2. Reader's guide to the Eschricht & Müller translations

2.1 Brief notes on Eschricht and Müller

We could find very little biographical information about D.F. Eschricht. Although he almost certainly published more than the two papers we include in this volume, we could find no other references credited to him. We do know that Eschricht was an intimate friend of Müller's, and remained so until Müller's death in 1858. The life and work of Johannes Müller, on the other hand, is very well-documented. Müller was incredibly prolific, publishing 267 papers and texts while also working as a practising physician and surgeon, university professor, and director of an anatomical museum. He published papers on a wide range of topics, from anatomy and physiology, to systematics and behavior. His choice of research animals was equally diverse, with the focus ranging from jellyfish to humans to ferns. Perhaps at this point it comes as no surprise that Müller often drew his own illustrations which accompanied his papers. In all, he is credited with 350 drawings (du Bois-Reymond 1859).

2.2 Miscellaneous notes on the translation

Because the Eschricht & Müller texts are so old, we feel that some advice to the reader is in order. We have done our best to make the language of the translation simple and easy to grasp. For many of the more cumbersome sentences this was not an easy task. Indeed, many of these sentences were broken up into two, three, or even four separate sentences. We hope that we have remained true to the essence of the text in spite of our merciless editing. We realize that some sections are downright confusing. For whatever comfort it provides, take heart that those passages are equally confusing in German. In these instances, as not to leave the reader completely dumbfounded, we have provided footnotes for supplementary information, commentary, and guidance. In general, the footnotes are there to help the reader get the most out of the text. We have tried to footnote generously, indicating instances where the authors are unclear or misled, or where we can provide relevant commentary. With regard to the somewhat convoluted style, we urge the reader to be patient. Keep in mind that it was written over a century and a half ago, when the volume of scientific literature produced was infinitesimal compared to today's output. Indeed, it is quite apparent from the texts that the pressures so he concise were not as strong as they are for scientists today.

This may be an appropriate place to point out that the Latin term for one root is *rerum mirabilis geminum* and the plural is *rerum mirabilium geminum*. *Rerum mirabile* (wonderful net) refers to a splitting of a small artery (or vein) into a net of smaller arteries (or veins). *Geminium (paired)* implies that the net consists of a plexus of both arteries and veins together as opposed to a plexus of just arteries or just veins.

2.3 Taxonomic Guide

Because these articles were written over a century and a half ago, it is not surprising that many of the species names given are no longer in use. Below are two lists designed to help the reader decipher some of the generic and species names given in the texts. Species and genera for which both the name and the meaning of the name have not changed are not included in these lists.

Many of the genera mentioned in the text are no longer in use. For many of these names, it would be inappropriate to provide only one modem equivalent, since many of the genera have been split up in addition to being renamed. Here we provide a list of modern genera that correspond to each of the outdated genera mentioned in the text. These lists are not intended to be a reliable systematic reference, but rather a guide that will give the reader a rough idea of which species the authors are referring to. Most of the list was generated by looking up references to the genera in question in the appropriate F.A.O. Species Catalogue and Eschmeyer (1990). If the genus name was listed as a synonym of a current species, the genus of that species was included in the list only if the date given was earlier than 1835. Any species given the name in question after that date would not have been known by Eschricht & Müller at the time of publication. In addition, any reference to the genus in question before 1835 that had subsequently been replaced by another name prior to 1835 was also not included in the above list. This type of search allowed us to be reasonably certain that the modern genera we list correspond to the species that Eschricht & Müller originally intended. As a rough guide, we assumed that the systematics laid out by Cuvier & Valenciennes in 1831 was consistent with the genera that Eschricht & Müller used. If you cannot find a particular genus name in the list, this means that the genus is still in use and has approximately the same meaning as it did in the original text. An * indicates that the valid name has not been confirmed. We have used the valid names in the translation except for a small section at the beginning of the supplement that concerns synonymy. We also have converted all units into metric.
<table>
<thead>
<tr>
<th>Species in original text</th>
<th>Valid name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alopecias vulpes</td>
<td>Alopias vulpinus</td>
<td>common thresher shark</td>
</tr>
<tr>
<td>Auxis vulgaris</td>
<td>Auxis rochei</td>
<td>bullet tuna</td>
</tr>
<tr>
<td>Caranx trachurus</td>
<td>Trachurus trachurus</td>
<td>scad</td>
</tr>
<tr>
<td>Carcharias vulgaris</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>Carcharias vulpes</td>
<td>Alopias vulpinus</td>
<td>common thresher shark</td>
</tr>
<tr>
<td>Carcharias glaucus</td>
<td>Prionace glaucus*</td>
<td>blue shark</td>
</tr>
<tr>
<td>Lamna cornubica</td>
<td>Lamna nasus</td>
<td>porbeagle shark</td>
</tr>
<tr>
<td>Lamna cornubicus</td>
<td>Lamna nasus</td>
<td>porbeagle shark</td>
</tr>
<tr>
<td>Pelamis sarda</td>
<td>Sarda sarda</td>
<td>Atlantic bonito</td>
</tr>
<tr>
<td>Sciaena aquila</td>
<td>Argyrosomus regius</td>
<td>meagre</td>
</tr>
<tr>
<td>Sciaena hololepidota</td>
<td>Argyrosomus hololepidotus</td>
<td>unknown</td>
</tr>
<tr>
<td>Scomber colus</td>
<td>Scomber japonicus</td>
<td>chub mackerel</td>
</tr>
<tr>
<td>Squalus cornubicus</td>
<td>Lamna nasus</td>
<td>porbeagle shark</td>
</tr>
<tr>
<td>Squalus thalassinus</td>
<td>Prionace glaucus*</td>
<td>blue shark</td>
</tr>
<tr>
<td>Thynnus alalunga</td>
<td>Thunnus alalunga</td>
<td>albacore tuna</td>
</tr>
<tr>
<td>Thynnus brachypterus</td>
<td>Thunnus thynnus</td>
<td>juvenile northern bluefin tuna</td>
</tr>
<tr>
<td>Thynnus pelamis</td>
<td>Katsuwonus pelamis</td>
<td>skipjack tuna</td>
</tr>
<tr>
<td>Thynnus pelamys</td>
<td>Katsuwonus pelamis</td>
<td>skipjack tuna</td>
</tr>
<tr>
<td>Thynnus vulgaris</td>
<td>Thunnus thynnus</td>
<td>northern bluefin tuna</td>
</tr>
<tr>
<td>Zygama malleus</td>
<td>Sphyrra lewini</td>
<td>scalloped hammerhead</td>
</tr>
<tr>
<td>Zygama tiburo</td>
<td>Sphyrra tiburo*</td>
<td>bonnethead</td>
</tr>
<tr>
<td>Zygama tudes</td>
<td>Sphyrra tudes</td>
<td>smalleye bonnethead</td>
</tr>
<tr>
<td>Genus in text</td>
<td>Corresponding valid genus/genera</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>Aloeias</td>
<td>Aloeias</td>
<td></td>
</tr>
<tr>
<td>Anacanthus</td>
<td>Most likely Layaris, but could also refer to Anacanthus or Uromgymnus.</td>
<td></td>
</tr>
<tr>
<td>Carcharias</td>
<td>Carcharhinus</td>
<td></td>
</tr>
<tr>
<td>Cestrina</td>
<td>Oxyrhina</td>
<td></td>
</tr>
<tr>
<td>Cephaloptera</td>
<td>Mobula</td>
<td></td>
</tr>
<tr>
<td>Cestracion</td>
<td>This genus most likely refers to the sharks of the family Heterodontidae, or the bullhead sharks. However, we could find no references to this name among the bullhead sharks until 1854. The only other alternative is that the name refers to the genus now known as Sphyrna. This is unlikely, however, as the authors refer to species from this genus as Zygaena.*</td>
<td></td>
</tr>
<tr>
<td>Galeus</td>
<td>Most likely Galeorhinus, but might also refer to Gaitus or Mustelus.</td>
<td></td>
</tr>
<tr>
<td>Lamna</td>
<td>Lamna, Isurus</td>
<td></td>
</tr>
<tr>
<td>Lepidopus</td>
<td>Although at the time of publication, many of the current species under the genus Lepidopus had not been discovered, all those that possessed this name at the time still possess this name.</td>
<td></td>
</tr>
<tr>
<td>Myliobates</td>
<td>Misspelling of Myliobatis.</td>
<td></td>
</tr>
<tr>
<td>Notidanus</td>
<td>Hexanchus, Notorhynchus</td>
<td></td>
</tr>
<tr>
<td>Pelemis</td>
<td>Sarca</td>
<td></td>
</tr>
<tr>
<td>Propetogyia</td>
<td>This genus was based on a deformed specimen of Raja batis and is no longer in use.</td>
<td></td>
</tr>
<tr>
<td>Rhina</td>
<td>Most likely Squatina, but could refer to Rhina.</td>
<td></td>
</tr>
<tr>
<td>Scomber</td>
<td>Scomber, Rastrelliger</td>
<td></td>
</tr>
<tr>
<td>Scyllium</td>
<td>Scyllorhinus</td>
<td></td>
</tr>
<tr>
<td>Scymnus</td>
<td>Dalatis</td>
<td></td>
</tr>
<tr>
<td>Selache</td>
<td>Cetorhinus</td>
<td></td>
</tr>
<tr>
<td>Spinax</td>
<td>Eimopterus</td>
<td></td>
</tr>
<tr>
<td>Stenops</td>
<td>Lorus</td>
<td></td>
</tr>
<tr>
<td>Thynnus</td>
<td>Thunnus</td>
<td></td>
</tr>
<tr>
<td>Thysites</td>
<td>Thysites, Thysites</td>
<td></td>
</tr>
<tr>
<td>Trygon</td>
<td>Taeniura, Dasyatis</td>
<td></td>
</tr>
<tr>
<td>Zygmena</td>
<td>Sphyrna, Euphyra</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2. Schematic of the visceral circulation in *Thunnus thynnus*. The two colors represent relative temperature, with blue denoting cold and red denoting warm. Solid lines represent arterial blood and dashed lines represent venous blood. Note that the liver is outside the warm vascular circuit defined by the visceral retia. The consequence of this arrangement is that the liver is cold relative to the digestive organs. According to Müller’s descriptions, the visceral circulation in the clasmobranch, *Alopias vulpinus*, is completely analogous, with heat exchangers located between the liver and the digestive organs (such as the stomach and the spiral valve). The only difference between the two is that in *A. vulpinus*, the retia are closely associated with the organs they serve, as opposed to being right up against the liver as in *T. thynnus*.

Fig. 3. Schematic of the visceral circulation in the clasmobranch *Lamna nasus* according to Müller’s descriptions. Note that the liver is included within the warm vascular circuit defined by the supraperitoneal retia, which lie between the liver and the heart. The consequence of this arrangement, in contrast to that seen in *T. thynnus* and *A. vulpinus*, is that the liver is as warm as the other viscera. Colors and symbols retain the same meaning as in Figure 2.
3. An annotated translation of D.F. Eschricht and J. Müller's "On the arterial and venous reta mirabilia of the liver and a peculiar structure of that organ in the tuna, Thunnus thynnus"

Translated with the assistance of Elisabeth Niimi.

Reported by J. Müller at the Academy of Sciences, 29 June 1835

With a few new additions

I. Purpose of the study

The tunas have been well known throughout the history of fisheries. However, with the exception of Couvier's work, the natural history of these fishes has been poorly described. There has been a lot of confusion with regards to distinguishing species within the order of acombrids and many of their anatomical peculiarities have been for the most part undescribed until now. Anthony6 examined animals of this family and discovered the unusually long and narrow gall bladder in Sarda saara, which, according to Couvier's observations,7 is similar to the gall bladder of the tunas (Thunnus thynnus, T. alalunga). The shape and position of the viscera and the peculiarities of the skeleton are presently the only things we know about the anatomy of these animals. The physiological characteristics of this family are unusual in more than one respect. One need only consider their regular migrations, about which we know very little. Stranger still is the elevated body temperature of the tunas, which John Dasy recently discovered.8 According to J. Dasy's observations, Catenostoma pelagius, an Atlantic tuna 4, had a body temperature of 37.2°C, in an ambient water temperature of 26.9°C, and there are other, less-reliable reports of elevated body temperatures in tunas. The observations we will report in this paper concern structural peculiarities of the viscera and their blood vessels, which are important in both anatomical and physiological respects. We have seen no traces of these structures in other animals. The other reason for the following examinations

5 Müller refers to the nervous system here as an order and in the next sentence as a family. Today they are classified as a suborder (Centrocondae) within the order Perciformes.
8 The two papers by Dasy are included in section 7 of this article.
9 K. paucis is in fact found in tropical waters worldwide.

involve a discovery of my dear friend Mr. Eschricht in Copenhagen. On November 1, 1833, Mr. Eschricht sent me a piece of liver from a tuna with a note that he had never seen such a peculiar liver structure: It consisted of numerous parallel vessels with small appendices. The whole mass could be torn only lengthwise and appeared fibrous. This sample sent by Mr. Eschricht interested me greatly. It seemed that the entire liver consisted of vessels with small lobes attached to them. In this preparation, the trunks of the vessels were no longer attached. I was therefore uncertain whether the structure belonged to the true glandular tissue of the liver or to the blood vessels. Fortunately, I found the liver and gut of a tuna at the Royal Anatomical Museum. Here I not only substantiated Mr. Eschricht's observations, but also determined that these parts were parallel, but mainly radiating vessels were not part of the liver, but were blood vessels that originated from large blood reservoirs on the convex side of the liver.10 The liver consisted of appendices attached to these channels which were quite visible with the naked eye. Such a blood reservoir was found in the convex part of each of the three liver lobes. The blood reservoir of the right lobe continued to the outside as a thick, short vessel trunk. The combined blood reservoirs of the left and middle liver lobes continued into one common vessel trunk. Both vessel trunks were severed close to the liver. When the reservoirs were inflated,11 all of the radiating vessels of the liver swelled as well. The gall ducts, on the other hand, did not possess this partly parallel, mainly radiating structure. I could not inflate the liver tissue at all by blowing into

10 The authors often indicate different parts of the liver by using the term "conduct" and "caverns." A quick glance at Plate III, Fig. 1 will make it clear why this terminology is convenient. Note that the three lobes of this liver essentially form a cap over the rest of the viscera. The surface of the liver that forms the most part from anteriorly is usually referred to the convex or outer surface of the liver. The surface that faces posteriorly is referred to as the concave or under-suff of the liver.
11 The authors used the technique of inflating blood vessels with air to simulate the pathways of the circulatory system.
the ductus hepaticus, not any of the vessels. We then had to
determine which of the blood vessels – the arteries, veins, or
portal vein branches create this vascular structure. It was
unfortunate that the trunks of all the blood vessels were severed
on the concave side of the liver and that the liver was not
connected by any blood vessels to the digestive tract or the
spleen. However, the end of the sinus on the convex area of
the liver proved that it, as well as the vessels originating from
the sinus, belong to the liver veins, because that side is positioned
north toward the heart. I could not inflate the entire liver from its
main stem on the concave side, and although many vessels lead
from there into the liver, the structure was very different from that
of the liver veins on the other side, where the whole radiating
distribution could be inflated from the sinus.

It became clear from our specimen that the radiating structure
of the tuna liver was due to the liver vein[13]. I informed my friend
Escherich of this and requested that he examine his specimen
further, but nothing more could be found from the isolated parts
of the liver. Mr. Escherich commented that he supposed that the
channels were mainly a continuation of the vessels, and that he
would welcome an opportunity to find out if this really were the
case. He also felt that too little consideration had been given to
the role of blood vessels in the glands, especially the liver.
Although it is clear that in embryos the intestine is most
prominent in the gut cavity, in adults it is the liver that is most
prominent. This was clearly demonstrated in the well-injected
specimens from Mr. Iben in Copenhagen, where the three vessel
systems and the gall ducts were injected with four differently
colored substances. With this preparation, the whole liver
appears extremely, intricately corollalike in spite of the fact that
the capillaries and the blind endings of the gall ducts were not
filled with the colored substance. He suggested examining the
livers of dolphin embryos, which he believes possess the same
characteristics.

I saw something peculiar on the tuna liver at the local
anatomical museum, as well as on the piece of liver sent from Mr.
Escherich, which could not be explained without further
investigation. They were 5 cm long, over 2-5 cm thick, and
bunches of reddish-green vessels without any attached liver tissue.
They were distinct from the true liver, and attached to the
concave side of it, where the vessels are found. These lobes
contained no sign of any liver tissue in their interior; I could

inflame the lobes by blowing into any of the larger vessels at
the beginning of the vascular bundle or at the cross-sections. The
tassel-like lobes were much thicker than the main liver tissue,
but at the same time, more porous, because of the vessels within
the structure. From our preparations, we could not determine
what these structures associated with the liver were. Although it
was clear that the innumerable vessels, which are held together
by connective tissue, suddenly converge into larger vessels at the
end pointing away from the liver, these vessels were severed, and
I could not make out whether this vessel-like mass attached to the
liver was a gland unique to the tuna or part of the vascular
system. These lobes could not be confused with the incredible
number of pyridine caeca. There was some similarity between a
cross-section of the lobes and the cross-section of the testes of
some fishes. The testes of the tuna can be inflated as well, but
the aforementioned lobes clearly are not reproductive organs.

Having observed so many peculiarities, we had to try to find
a better-preserved gut of a tuna. I obtained one as a favor from Mr.
Lichtenstein, who is the Prussian King's Consul in Montpellier.
Although the viscerae of this 90 cm long animal were already
starting to deteriorate, we could still answer our main questions.

I found that the attached mass which branched out on the concave
side of the liver is a rete mirabile between the portal vein and the
gall veins of the gut[14], spleen, and stomach[15]. Therefore all veins of
the digestive system are first divided[16] into this vessel mass and the
blood gets distributed throughout the liver via the rete
mirabilia[17]. This structure is unique in the animal world and is

12 Although the evidence presented is not all that convincing, the assertion is
correct. These vessels on the concave side of the liver are vasa venae vessels leading
blood from the liver to the heart.
13 These so-called radiating liver veins are actually arteries and veins, as is later
stated. They are apparent in Plate I from the original, as well as in Fig. 4, 7, and 14.
14 Miller refers to the gut rete as "livers" here, which is confusing because he
takes liver lobes as well. Fortunately, his use of this term is limited to Section 1.
15 Miller uses the term "Den" which literally refers to that part of the
intestinal cavity from the pylorus to the anus, plus the pyridine caeca. There is no
corresponding word for this in English. We use the term "gut" to denote this
word.
16 It is true that the rete to which he refers forms a connection between the veins
of the viscera and the liver. There is some confusion over what exactly is meant by
the term portal vein. The visceral portal vein connects the viscera to the rete and
the hepatic portal vein connects the rete to the liver. Miller neglects to mention
that the venous vessels represent only half of the veins within a given organ.
The venous vessels are intertwined with arteriolar vessels from branches of the
portal artery. This point is not straight in the contributions by Mr. Escherich.
17 The authors use this term often to describe the lobulated branching of
relatively large vessels into the nearly microscopic ones that ultimately make
up the vein. The authors clearly do not mean that the veins dissolve in the
dehiscent sense.
18 This is the first of a series of comments which imply that there is no physical
means for blood of the digestive system to bypass the gut rete. If it is indeed true
that all blood from the digestive organs must first pass through a vein, this has
important implications for speculation about the thermoregulatory capacities of
these fishes. It has been suggested that a rete hypobranchiae could allow warm fishes
to make dramatic changes in the effective thermal conduction of their gut, thereby
affecting them to better thermoregulatory control of this region (Carey 1981).
The complete absence of a vascular bypass of the rete would represent a significant
change in this hypothesis.
The digestive system in tunas and other scombrids was described by Cuvier in his *Histoire des poissons*, Volume VIII; he describes the long, intestinal shape of the gallbladder in *Thunnus thynnus*, *T. alalunga*, *Sarda sarda* and the same long gallbladder in *Scorber*, *Auxis*, *Thyreos*, and *Lepidopus*. In his *System of Comparative Anatomy*, Meckel neglected the scombrids, probably for a lack of proper sample material. In Meckel's *Archiv* 1826, Rathke also neglected the scombrids in his article on the portal system in fishes.

The stomach of the tuna (Plate III, Fig. 1, K) is a long, conical, blind sac with fleshy walls that extends to the posterior end of the gut cavity. It is a direct continuation of the pharynx. The blind, blunt end of the stomach points posteriorly. The *pylorus* is positioned on the dorsal side of the sac. The *pars pylorica* of the gut, into which the trunks of the pyloric caeca (M) lead, are anterior to the stomach, with the pyloric caeca (M) positioned partly anterior to the stomach, partly to the left of it.

The intestine first ascends from the pars pylorica anteriorly starting under the liver, turns and ascends posteriorly along the length of the stomach, then turns again anteriorly under the first dorsal bend, and again posteriorly, along the last ascending part to the anus. Its diameter remains constant throughout. The spleen (S) is long and narro, and is positioned between the first descending and the first ascending parts of the intestine. With regard to the numerous branches of pyloric caeca and their structure, I refer to the figure and description which I gave in the *paper de glandularum structura peniculi* p. 64, Plate VII, Fig. 4.5.

As previously stated by Cuvier, the liver consists of three flat main lobes: one in the middle (G) and two off to the side (F, H). Generally triangular in shape, they possess further cleavages which result in secondary lobes; these secondary lobes, however, vary from individual to individual and the number of them is not constant. The three main lobes of the liver are connected through thin, lobular strips of liver tissue, moreover, the middle lobe and the left lobe converge completely at the base and consequently, these two lobes share the same liver vein stem.

The gall bladder (F) is a very long, narrow channel with a blind end, which even in small tunas can be about 30 cm long. Its length is equivalent to the length of the first descending part of the intestine on which it lies, and its blind end reaches close to the anus. In two cases, it was slightly widened near the origin where it receives the liver ducts. The entrance of the gall duct into the gut is found in the region where the last of the five stems of the pyloric caeca enter the gut. The positions of and connections between the organs of the digestive system are shown in Plate III, Fig. 1.

II. General description of the digestive system in *T. thynnus*

The digestive system in tunas and other scombrids was described by Cuvier in his *Histoire des poissons*, Volume VIII; he describes the long, intestinal shape of the gallbladder in *Thunnus thynnus*, *T. alalunga*, *Sarda sarda* and the same long gallbladder in *Scorber*, *Auxis*, *Thyreos*, and *Lepidopus*. In his *System of Comparative Anatomy*, Meckel neglected the scombrids, probably for a lack of proper sample material. In Meckel's *Archiv* 1826, Rathke also neglected the scombrids in his article on the portal system in fishes.

The stomach of the tuna (Plate III, Fig. 1, K) is a long, conical, blind sac with fleshy walls that extends to the posterior end of the gut cavity. It is a direct continuation of the pharynx. The blind, blunt end of the stomach points posteriorly. The *pylorus* is positioned on the dorsal side of the sac. The *pars pylorica* of the gut, into which the trunks of the pyloric caeca (M) lead, are anterior to the stomach, with the pyloric caeca (M) positioned partly anterior to the stomach, partly to the left of it.

The intestine first ascends from the pars pylorica anteriorly starting under the liver, turns and ascends posteriorly along the length of the stomach, then turns again anteriorly under the first dorsal bend, and again posteriorly, along the last ascending part to the anus. Its diameter remains constant throughout. The spleen (S) is long and narrow and is positioned between the first descending and the first ascending parts of the intestine. With regard to the numerous branches of pyloric caeca and their structure, I refer to the figure and description which I gave in the *paper de glandularum structura peniculi* p. 64, Plate VII, Fig. 4.5.

As previously stated by Cuvier, the liver consists of three flat main lobes: one in the middle (G) and two off to the side (F, H). Generally triangular in shape, they possess further cleavages which result in secondary lobes; these secondary lobes, however, vary from individual to individual and the number of them is not constant. The three main lobes of the liver are connected through thin, lobular strips of liver tissue, moreover, the middle lobe and the left lobe converge completely at the base and consequently, these two lobes share the same liver vein stem.

The gall bladder (F) is a very long, narrow channel with a blind end, which even in small tunas can be about 30 cm long. Its length is equivalent to the length of the first descending part of the intestine on which it lies, and its blind end reaches close to the anus. In two cases, it was slightly widened near the origin where it receives the liver ducts. The entrance of the gall duct into the gut is found in the region where the last of the five stems of the pyloric caeca enter the gut. The positions of and connections between the organs of the digestive system are shown in Plate III, Fig. 1. **III. Radiating structure of the liver veins. Retia mirabilia of the portal vein system**

On the convex side of the liver, one can see where both liver vein stems originate (Plate I). The smaller stem (about 8.5 mm wide) leads blood out of the right liver lobe, whereas the second, thicker one leads blood out of the left and middle lobes. Both stems of the liver vein penetrate the diaphragm and descend into the sinus venosus, where they join the left and right body veins. The sinus venosus leads into the atrium. The part of the liver vein stem that is connected to the liver spreads sinuously throughout the upper portion of the liver. The sinus expansion of the right liver vein stem inside the right liver lobe is about 5 cm long; in the left and right liver lobes where the expansion is shared, it is about 10 cm long. Both expansions are about 17 to 23 mm wide. The inner walls of these cavities possess many indentations from which the radiating branches of the liver veins originate. These diverge to various regions of the liver, some ascending and others descending in a more or less radiating fashion. Each radiating branch of the liver vein soon branches into more branches, which continue in the same direction along the edge of the liver and continue to the lower surface of the liver. The largest of the radiating vessels have a diameter of 1 to 2 mm, and the smallest have a diameter of 0.5 mm or less. On macroscopically sections, flocks of liver tissue can be seen attached to the finest vessels. In spite of the peculiar radiating distribution of the liver vein branches, this arrangement of the liver in tuna is probably the same as in humans and mammals. According to Kerman's excellent examination, the liver veins in mammals are

19 Müller uses the term "symbiosis" here (literally, "slow-moving one") which most likely refers to the siles. Although the term is used today to refer to the group of organisms commonly known as "water bears", it is clear that these are not the organisms to which he is referring.

20 In fact, each one is made up of thousands of vessels.
packed with tiny acini and they receive the venous centrales of the acini through innumerable small openings.

On the underside of the liver, one sees the rete mirabilia of the portal vein system. The rete is various 5 cm long, 13 to 51 mm thick vessels of fine, straight, occasionally-converging blood vessels that are held together with dense tissue. Each vein of the visceral portal system becomes either its own rete or, in most cases, part of a rete before entering the liver. At the base of each rete, the blood collects in large vessels which branch into the liver as visceral portal veins. Some of the rete are pear-shaped, with the tip pointing away from the liver and accepting the vein; the base sits on the liver and the attached part is smaller than the body of the rete. Other rete (namely the small ones) are spindle-shaped. The part facing the liver is always thicker than the stem. One of the largest rete is flat and is nearly as wide as it is long. This form is due to a greater number of side-by-side veins entering the rete. In such a rete, one can discern the small tufts of vessels which correspond to individual veins. As these small tufts can be either pear-shaped or spindle-shaped, the point at which the whole structure is attached to the liver is somewhat bunched together. The narrow base of this rete is composed of the smaller bases of the individual tufts. The vessel stem of the rete separates immediately into numerous branches which again separate into smaller branches, so that the main structure of the rete consists of many hundreds of side-by-side, mostly straight vessels between 0.5 to 0.7 mm in diameter, which occasionally converge and continue toward the liver. If one infuses a stem, the part of the rete which contains vessels originating from that stem, swell up. The vessels are also attached at the base and collect into larger ones in various ways.

These vessels lead from the stomach to the rete, one from the right side of the stomach, one from the left, and a third from the ventral surface. A large vessel stem originating from the spleen enters a separate rete. Many blood vessels originating from the pyloric caeca and the intestine enter individually into the largest of all the rete. All of the above form a row of rete over the pars pylorica of the intestine.

The right liver lobe possesses two large, separate rete. They are attached to the liver to the side of the common area of this lobe, one is pear-shaped, the other is more spindle-shaped. The spindle-shaped rete receives a vessel from the right side of the stomach. In the middle and frontal section of the bunch, many small vessels enter from the frontal part of the stomach's ventral surface. The pear-shaped rete receives the large vein from the spleen. At the thinnest part of that rete, smaller intestinal veins enter as well.

The middle lobe of the liver has a very wide, flat rete which does not have a single stem, but branches into many points on the free edge. This rete is 5 cm long, has the same width and is 25 mm thick. Many small individual vein stems enter into the points from the pars pylorica of the intestine and from the pyloric caeca. Each point contains one or a few small stems. A stomach vessel which runs behind the gall bladder and spleen enters this rete as well.

There are several rete attached to the left liver lobe: two large, and three small ones. One of the large ones receives blood from the left ventral side of the stomach, the other from the pyloric caeca. This rete receives blood from a few small veins as well. On the concave side of the liver, there is a large, thick-walled vessel which partly branches within the liver and partly as the base of the rete. This is illustrated in Plate II, Y. This vessel splits into two branches, but its origin could not be determined in the last specimens because it was severed when the gut was taken out and cut away from the trunk. One branch runs along the concave side of the right lobe, while the other runs along the concave side of the joined middle and left liver lobes. If those vessel stems are inflated, the rete swell up as well. Because many of the branches exit the rete and spread out into the liver, and because the alveolated vessels branch in the liver as well as in the rete, these vessels became even more puzzling. Is this stem an artery or vein? It is a stem of the portal vein which forms out of the rete and connects all of them? If so, where does the main severed vessel originate? Perhaps it receives a vein of the trunk or the reproductive organs, which are not associated with the rete but still empty their blood into the portal veins? However, the fact that the walls of this vessel stem and its branches are quite thick challenges the idea that this vessel is a vein. The most extraordinary size of the nerves accompanying this vessel is also puzzling. In order to get a clear picture, a new tuna and its vessels had to be examined in situ.

The previous observations of the tuna liver and rete were presented in Plates I and II and in the last section of the article.

23 There is evidence against the possibility of a physical rete-like bypass. See footnotes 47 and 48 for more information on this issue.
24 See Fig. 13 for photographs of a complete set of bladdic visceral rete in situ.
25 By "free side", he means at the end of the rete pointing away from the liver toward the digestive organs.
26 The vessel to which he is referring is the coeliac artery, which supplies the viscera with oxygenated blood from the gills.
27 Blood returning from the trunk indeed does not pass through the gut rete. However, tunas do possess a large, short-like rete muscula on either side of their body through which venous blood from the muscles and arterial blood to the muscles must pass. See Carey (1982) for more on the structure and function of the muscle rete in tunas.
28 Indeed, the visceral nerves of the bladdics are gigantic. John Davy comments on the unusual size of the branchial nerves found in this species as well (see Section 7 of this note). The significance of many large nerves in the species remains a mystery to this day. See Fig. 10 for a photograph of some of these large visceral nerves in situ.
presented on 29 June 1835 at the Royal Academy of Sciences. New materials which were obtained here as well as in Copenhagen have yielded greater insight than our previous combined efforts could. New and important findings by Mr. Exchirich as well as the results of the examination of a second tuna were contained in the next two sections. After personal communication with my friend in the fall of 1835 in Copenhagen about the retia of the portal vein, the questions at hand became more pressing to both of us. A rich source of information suddenly became available in Copenhagen. Soon after my departure from Copenhagen, they received a very large, fresh 'tuna caught by the seine.' Mr. Exchirich not only confirmed the retia of the veins of the digestive system, but made a new and important discovery. He found that some of the vessels of the retia were arterial and that the artery of the digestive system, the aforementioned one which was puzzling to me, branches partly into the liver and partly to the base of the retia where it dissolves into innumerable vessels which make up some of the retia and combine on the free end of the retia into a single vessel leading to the gut. Certain vessels of the retia which lead to the liver receive blood from the veins of the intestine, stomach, pancreas, and spleen. The other vessels of the retia, which run in between the venous vessels, receive arterial blood and lead to the digestive system: the spleen, pancreas, stomach, and intestines. In contrast, the arterial vessels of the liver do not form retia before entering the liver. The retia therefore possess a double connection, they connect to the liver via the hepatic portal vein and to all the other parts of the digestive system via the arteries. Although they are connected with the liver, they are of equis importance to all the other organs of the digestive system.

I now present word for word the results of Mr. Exchirich’s examination of the aforementioned tuna.

IV. Retia of the arteries of the digestive system. Relationship of these to the retia of the portal vein and to the liver veins.

(Contribution to the anatomy of the tuna liver by Mr. Exchirich.)

The tuna whose liver was used for the following examinations arrived in Copenhagen on 29 September 1835. It was alleged to have been caught on the 27th near Helsingør in a large net, which the fish partly destroyed. Its weight was estimated to be around 180 kg. Its length from mouth to tail was 270 cm, from mouth to the edge of the operculum it was 67 cm and its girth at the widest part was 121 cm. It was male (as was later determined).

The body cavity was widely cut open to the pericardium. Because the liver tissue was so soft that it tore easily when touched, we approached the main branchess of the vessels, which were the easiest to get to, with great care. Mr. Isenham injected the two large liver vein stems which were severed close to the pericardium with a green substance, some arterial stems which were positioned on the right side of the liver, beside several portal vein branches, with red, and several portal vein branches with a yellow substance. The gall ducts were injected (with very little success) with a white substance from the diacutus cytosin. The injection substances all consisted of colored glue. The work on that colossal animal took from one o’clock in the afternoon until evening and because the liver continued to disintegrate more and more, it was removed and kept in a strong ethanol solution. A few days later, Mr. Isenham tried (again with limited success) to inject several branches. The liver resintained in ethanol for several weeks and was only examined long after the skin of the fish was stuffed and the flesh distributed for consumption. The width of the liver was 70 cm and from front to back it was 28 cm.

On the convex, anterior side, and on the posterior, slightly concave side, the tuna liver possesses several cleavages which give it its lobed structure. One can distinguish six lobes on the convex edge, each of these possessing four 3-lobes. These lobes are separated to different degrees and are themselves further cleared (through less deeply) or possess small appendages.

The outer surface of the liver is generally convex; the inner surface is somewhat concave. On the underside a few cut-shaped masses stand out. There are eight of them. The largest six exist in pairs and can be classified as the right, middle, and left pairs. Each of these pairs consists of a frontal and a back cone which are connected more or less at their base. In addition, there are two unpaired, smaller cones between the left and middle pair.

At the location where the base of the cone attaches to the underside, one can place a spatula partly between the cones and the actual liver if a small amount of tissue is removed. Only part of the base of the cone continues into the liver. The rest of the base is therefore contiguous but not continuous with the liver. At the cone’s point of connection, the liver itself is extremely

34 Exchirich refers to the retia as ‘neces’.

35 Our examination has led us to classify the retia as five main groups. This way of classifying the retia for the first time is agreement with the authors findings. The only difference lies in the way small associated retia are classified. Fig. 1, clearly defines the five retia we consider to be discrete and indicates which organ they serve as well as to which liver area they attach.
six exist in pairs and can be classified as the right, middle, and left pairs. Each of these pairs consists of a frontal and a back cone which are connected more or less at their base. In addition, there are two unpaired, smaller cones between the left and middle pair.

At the location where the base of the cone attaches to the underside, one can place a spatial part between the cones and the actual liver (if a small amount of tissue is removed). Only part of the base of the cone continues into the liver. The rest of the base is therefore contiguous but not continuous with the liver.

At the cone's point of connection, the liver itself is extremely thin; in my colostomy specimen, it was 6 mm thick at most. These thin areas of the liver cannot be seen on the convex side of the liver. On the concave side they appear as an indentation that surrounds all the cones. Here they are connected to each other by means of smaller vessels. These form the portal system of the liver.

In the hepatic portal area, one can find (1) the gall ducts, (2) some nerve stems, and (3) a large artery, which we will call "thick-walled" because of its nearly cartilaginous walls. The visceral portal vein enters into the tips of the cones, whereas the hepatic arteries exist from the convex surface of the liver, not far from the back edge. On the tip of the cone, one finds beside the artery veins a few arterial stems whose walls are not nearly as thick as the walls of the aforementioned artery. On the right frontal cone (which was especially well-injected and therefore could be examined precisely), we found a nerve stem to the thickness of a sheet of paper. A similar, even thicker nerve stem could be seen on the base of the same cone or on the cone paired with it.

Among the gall ducts, the ductus choledochus is quite narrow. Although it empties into an enormous gallbladder (84 cm long in the dissected state), the ductus choledochus is even narrower. The gall bladder lies along the middle of the whole body cavity and it was very difficult not to damage it while cutting open the body cavity. The d. hepaticus decreased in width several times, and it continued across the lower liver surface, branching within the portal area to each of the liver lobes. The path of one of its branches was especially conspicuous. It passed between the two central cones, where it was covered in a bridgelike fashion by the tissue connecting the two.

Within the liver, the liver ducts seem mainly to follow the tractus of the arterial branches; deeper down, however, their exact path was difficult to determine because of their thin walls, and because the injection was only partially successful.

The portal vein is formed by a large number of small branches which enter into the tip of the cones. These branches come mainly from the digestive system and possibly from other parts of the posterior half of the body (I agree with this speculation, but the findings from the last two years do not substantiate it). The three paired frontal cones appear primarily to receive the veins of the gut, while the cones farther to the back receive the veins of the gut as well as veins from the surrounding area. The blood enters the aforementioned cones through many stems. For example there are 14-16 stems which enter the middle cones at the back; each of the stems soon split into a flat mass which appears to be part of the liver tissue.

Prior to injection, most of the liver surface, namely the cones and the convex surface, appeared striated, as I noticed a long time ago on a tuna liver preserved in alcohol, which, incidentally, was the observation that originally instigated this study. After injection, everything became clear. The arteries were red, the portal veins yellow, the liver veins green, and the gall ducts were (very incompletely) white.

After injection, different parts of the liver were distinctly colored, with most of the parts appearing striped in alternate colors. The cones were striped throughout with red and yellow, without any trace of green and without any evidence of other tissue in between. The convex surface of the liver appeared striped in a fan-shaped manner. The stripes were mainly green in color with fewer red, far fewer yellow, and very few individual white stripes. The lower liver surface was striped with a same color pattern in the portal area, the area closer to the frontal edge was not striped, but was grey-brown with isolated darker round spots each with a diameter of about 2 mm.

After some incisions were made and many tests performed in order to follow the individual stems, the following results were obtained.

Structure of the cones. They are truly corporea spongiosa, in that they consist only of vessel bunches of the portal vein and the arteries. The two blood vessel types are completely isolated so that nowhere does the injected material mix. The vessel bundles consist entirely of many long vessels of nearly the same diameter (about 0.7 mm wide - all measurements were done with the naked eye), which are fairly straight and parallel to the axis of the cone and which continue along to entire length. This can be seen on the surface of the cones, as well as by cutting into them. The cut surface of a cross-section appears sieve-like because of the

36 Here again is a reference to the colostomy described previously by Müller (see footnotes 26 and 31).

37 This remark is significant in that it implies that there is no mixing of arterial and venous blood within the vein.
numerous, nearly similar diameter holes of the severed vessels. At various locations, the vessels deviate from this straight path. This occurs in particular around the aforementioned large nerve stem, which branches slightly within the cone and continues within it approximately along the cone axis. Within the rete, the nerve stem is enclosed by a cellular sheath, similar to the commissura anterior of the brain. Around this sheath the vessels are not straight, but instead form a kind of mesh. At the base of the cone the vessels deviate completely from their previously parallel, lengthwise direction. First, they turn toward the centre, and when they reach it, they then turn toward the base. They turn a final time, radiating out, and soon after appear as true vessel stems.

The vessels of the cone are therefore connected at their tip as well as at their base with the vessel stems, and this applies to both the vessels of the arterial system as well as those of the portal vein system. The vessels within the cones are generally analogous to retia mirabilia, especially those found in the extremities of sluggish mammals. If these cones did not belong to the true liver, but instead were a diverticulum of the digestive vasculature, the tunas could be called 'liver slotts'.

The question at hand is whether the blood in each cone flows from the tip to the base or vice versa, a question which must be resolved by examining the parts in relation to one another, but also through the examination of the isolated liver.

At the base of the rete, the vessel stems with which the rete vessels are connected are found in the portal area. These vessels then become the portal vein stems which lead only into the lobes of the liver, there therefore must be a subsequent or second branching. For the portal blood vessels, the question of the blood's path is easily answered, the blood enters from the digestive system into the tip of the cone, diverges into numerous vessels and converges in the portal area. Therefore it branches in the usual way in the liver lobes. If the direction of blood flow for the arteries in the cone is the same as that of the portal vessels (as described above), this would be consistent with other animals, in which the arterial and portal blood flow in the same direction. However, the situation is seemingly the opposite. First of all, the portal vein branches come from the digestive system and the arterial blood can not come from there, but instead must go there. Secondly, the arterial stems in the tips of the cones are quite thin-walled, whereas the cones in the portal area are very thick-walled, so that by cutting into the previously-mentioned thin liver areas, the tissue seems slightly cartilaginous. There are branches of the thick-walled artery in the portal area which branch again, accompanying the secondary or true portal vein branches into the lobes of the liver. This view is supported by the fact that the large nerve stem, the vagus, of the right frontal cone, only passes through in such a way that it enters at the base and exits at the tip. Inside the cone it only branches a few times, with all of the branches directed towards the tip, except for the last branch which runs back into the tip of the cone.

The path of the arterial blood is as follows. The thick-walled artery is the common stem of the liver arteries and the arteries of the digestive system. In the portal area, it branches out partly as the true liver artery, entering the lobes of the liver with its branches following the path of the hepatic portal veins, and it partly transforms into innumerable thin vessels, which originate from the main branches at rather shallow angles. Hereafter (along with the similar rete vessels of the portal vein stems), the branches form the spongy cones. At the tips of the cones, they recombine at very sharp angles into branches according to their destinations into the digestive system. Now we will describe the lobes of the liver. As previously described, the liver veins originate from the convex liver area close to its back edge; these areas appeared with thick, green stripes after injection (the color of the injected liver veins). The stripes radiate in a fan-shaped manner over the entire surface toward the frontal edge, and in this case, a few branches of the portal vein, the liver arteries, and some of the bile ducts run parallel to these stripes. It was also observed that on the underside, at least in those parts closest to the portal area, a similar fan-shaped distribution exists, otherwise in that area the liver surface appears more evenly grey-brown, with isolated darker spots.

The stripes, which can be seen on the surface of the liver lobes, are mainly due to straight vessel branches of similar thickness of all three vessel types (especially the liver veins), and as far as I know, the bile ducts as well. These vessels have a completely different significance from the vessels in the cones. They are not reta. Their linear form can be attributed to the

38 See Fig. 12 for close-ups of all the major visceral retia in cross-section.
39 By naming these tuna "Leberzähnhäute", Eichbichl is making a somewhat biassed connection between the structure of the retinae mirabilis found in the tuna gut and those found in the extremities of the sixth.
fact that the liver separates regularly from the portal area out into
subsections in approximately the following manner:

Adjacent to the portal area, the liver tissue is tube-like. At
this point, all of the branches diverge slightly, spreading first
toward the frontal edge, then turning toward the lower
surface. Along this path, more and more granular tissue appears
between the vessels, and beginning with the lower surface and the frontal
edge, this tissue makes up a great part of the whole. If one tears the
liver tissue, especially the somewhat macerated pieces, one always
tears parallel to the given direction and doesn't appear
cellular like the veins. Instead it is granular due to the tissue
surrounding the vessels. Because of this, the veins appear to
quite often have blind ends attached to them. However, I could
not find any injected material from any of the vessels entering
into these sacs.

If one could explain the nature of the granular tissue, the
liver would be the first liver whose structure was sufficiently
understood. As is usually the case, one small, but important
bridge remains to be crossed.

If we take a detour around this bridge, and follow the
returning liver veins, then we see that they converge into two
large reservoirs which are found transversely or the convex
surface of the liver, not far from the back edge. From there the
reservoirs discharge into two very large vessel stems which soon
appear lead into the venous sinuses.

This is the conclusion of Mr. Eschricht's observations.

V. Characteristics of the other visceral organs and vessels

The main goals of the entire investigation were reached.
However, the relationship of the veins of the reproductive organs
and the urinary system as the rest of the veins remained to be
explained. A 90 cm long tuna which had been sent in the fall of
1835 from Montpellier reached us in Berlin in April, which was
easily enough to shed some light onto this matter before the
conclusion of our work. We are thankful for the consideration of
Mr. Lichtenstein in Montpellier, who arranged the sending of the
specimen to us. At the same time, Mr. Eschricht was nice
eough to send the injected liver described previously from the
tunas acquired in Copenhagen for comparison, even though he had
sent the results of his examinations much earlier by letter. After
examining the injected liver, I have nothing to add to Mr.
Eschricht's findings.

One observation that I made on the second tuna from
Montpellier concerns a strange peculiarity of the structure of the
kidneys. After the side walls of the body were removed, the gut
of this animal was prepared in situ. The drawings of Plate III,
Fig. 6 were made thereafter.

The kidneys of the tuna are not positioned along the upper
body wall, as they are in most fishes. Instead they are positioned
only over the anterior part of the body cavity. Indeed, the
majority of the tissue can be found in the space between the
pectoral girdle and both sides of the beginning of the aorta, at the
places where the aorta originates out of the convergence of the gill
veins, dorsal to the esophagus, and dorsal and posterior to the
gills. See Plate III, Fig. 5. Its anterior end reaches up to the
anterior gill veins, and nearly to the posterior part of the skull; at
this point the two posterior gill veins of each side are covered by
the kidney from above. From the beginning of the aorta to the
point where large arteries branch off to both sides of the trunk,
the kidneys are separated and between them the largest part of
the aorta is found. Prior to the termination of the aorta as the artery
caudalis, the kidneys exist as a common mass, continuing
unbroken and narrow for a stretch in the middle of the upper
body wall, without reaching the halfway mark of the length of the
body cavity. The anterior, paired part of the kidney is very thick
and wide and its outer and upper surface is adjacent to the
catamenost and uppermost part of the inner trunk wall and the
pectoral girdle; in contrast, the smaller posterior part is very thin.
The kidney clearly consists of small flat lobes; this is especially
evident on the upper and smaller posterior parts. Just before the
posterior end, the unpaired kidney separates again into two short
tubular lobes, with a branch of the ureter originating from each
lobe. Both branches combine immediately at a steep angle to
form an unpaired channel, which continues in the midline of the
body wall as a thick-walled tube. Only the beginning of the
ureter of the tunas is paired and the stem which passes through
the largest part of the body cavity is unpaired a formation which
is not known in any other fish. Upon opening the body cavity,
nor the kidneys nor the ureter are immediately visible. They
are separated from the body cavity by a fibrous tissue, which
must be removed in order to see them. This tissue is very strong
and fine where it descends prior to the unpaired ureter. The 2.5
mm long body of the urinary bladder is connected to the lower
wall of the most posterior end of the ureter. The urethra
continues behind the rectum and enters into the common
urogenital opening which is positioned posterior to the anus, as
it is in other fish.

The beginning of the aorta originates from the first two
cardiac grooves. When he used the terms "paired" and "unpaired" to
describe the soma and vessels, he meant that there are two
separate, discrete structures. "Unpaired" is used to refer to a singular mass or
vessel lying in some nearby location is paired.

46 See Fig. 4 for a photograph of these vessels which lead blood out of the liver
toward the heart.
of the gall veins. At first, the first two gall veins combine on each side into a common stem. Both common stems, the venae branchiales communes, converge at a steep, posteriorty pointing angle. This is why the start of the aorta is unpaired between the anterior ends of the paired pairs of the kidneys. The beginning of the aorta receives them as well as the two posterior gall veins from each side. From the beginning of the aorta to the branching off of the arteries of the trunk, the arteriae axillares, the aorta is very thick. From that part of the aorta, some kidney arteries branch off laterally and the only large artery of the digestive system branches off in a ventral and posterior direction. The arteriae axillares and the venae axillares penetrate the posterior area of the lateral main portion of the kidney in such a way that they obliquely lead to the muscles of the trunk. Within the kidney, the arteriae axillares send off branches to the kidney. After the exit of the arteriae axillares, the dorsal aorta suddenly decreases in diameter by more than half. This part of the aorta continues for only a short distance above the posterior, unpaired part of the kidney, which still contains branches at this point, and then enters into the channel of the lower spinal processes, until it ends as the arteria cavalis. The channel of the lower spinal processes begins in the aorta at the ninth vertebrae in the anterior part of the body cavity. At this point, the posterior ribs are afforded to the lower processes. The tail does not start until the 19th vertebra. For its whole length, the aorta is positioned in the channel of the lower spinal processes.

The arteria systematica chelipodialis descends with the large nerves of the digestive organs between the pharynx and kidney, comes from the right of the pharynx to the concave area of the liver, and separates at this point into two branches, sending small branches to the digastric and the surrounding area. One branch follows the concave surface of the right liver lobe; the other follows the same area of the middle and left liver lobe. At the point where the branches run along the base of the retina, they send many branches, the arteriae hepaticae, into the concave surface of the liver. The remaining branches get distributed completely into the bases of the retina and form the arterial part of them. Leaving the retina, the arterial branches converge again into the formerly described stems which have much thinner walls that the arterial branches entering the retina. The arterial vessels originating from the retina branch out everywhere accompanied by the veins to the stomach, intestine, spleen, and the pyloric caeca. All arteries of the digestive system, including those of the liver, originate from that artery. All branches of this artery intended for the stomach, gut, spleen and pancreas first transform into retina. I could not find the arteries of the reproductive organs without injection. The sinus for all the body veins, which is connected to the atrium, has a pointed appendix on the left side. At the posterior end, the sinus receives the two lower vein stems after they penetrate the diaphragm, ventrally and anteriorly, it receives a vein from the ventral wall of the thoracic area (the vena jugularis inferior). From the left and right, it receives the venae caveae communes, with each vein consisting of an anterior and ventral branch. The anterior branch is positioned on the ventral side of the paired portion of the kidney between the kidney and the pericardium. The posterior portion of the vena jugularis penetrates the lower part of the paired, main portion of the kidney on each side, receiving kidney veins as well as the veins of the prostate along the way, and ending as the posterior main vein of the trunk muscles, the vena axillaris or vena lateralis posterior. No vein exits at the point where the continuations of the aorta enter the channel of the lower spinal processes. One can see that the positioning of the main venous vessels differs slightly from that in other fishes.

64 More evidence against the possibility of a physical bypass of the get retina. See footnote 23 and 47 for more on this issue.

64 T. rheums is one of the only fish known (along with Lates rumeus) to lack completely a posterior cardinal vein. Lateral subclavian veins return blood to the brain in these fish. It is actually somewhat surprising that Miller doesn't mention the presence of the lateral circulation displayed by this species. See Carey & Teel (1966) for more information on the unique circulatory modifications of this and other related fish.

65 Not all species of the genus Thamnocephalus possess vascular retina morphologies.

66 Thamnocephalus, the name used by the authors, is most likely the name (miss)assigned to small individuals of the species Thamnocephalus (Bruno Collatla, personal communication). With this in mind, the striking similarity between the vascula of T. rheums and that of this "species" is not surprising.

67 We are at a complete loss as to the meaning of this word. There is no geographical name in the modern world named Latte. It is possible that Latte was a misprint or the name of a private collection.

VI. Retia in other Fishes.
The rivet behaves the same way as in mature Thunnus thynnus; the kidneys are found in the same location and the ureter is unpaired as well. The rivet receives the blood from the same areas as in mature T. thynnus; except that the blood from the small semilunar valve is received by the portal vein via the back-review of the right side; this small vein receives the blood from the surface of the semilunar and the posterior portion of the peritoneum that lies stop the semilunar valve; veins not belonging to the digestive system do not enter the rivet at this location. I have not yet been able to examine Sarda and Thynnus. I found no rivet in Scymmen scorpius. I did observe a similar structure in the elasmobranch65, Lamma nasus. Not long ago, the Royal Anatomical Museum received a very large specimen of L. nasus, which was captured near Copenhagen and preserved in salt. Mr. Eschricht acquired this large female shark for us in exchange for another specimen and sent it fresh. Although it took a long time to get here, the viscera were preserved well enough that we could examine them. Upon removal of the gut, I became aware of two adjacent masses composed entirely of blood vessels which lay on the dorsal side of the body cavity to either side of the pharynx and partly over the liver. They were shaped like a flat, compressed pyramid with the base of the pyramid pointing posteriorly. Both their form and structure resemble the rivet of the tuna. They consisted of anastomosed blood vessels which ran lengthwise, and could be completely inflated from the top as well as from the bottom of the mass. On the upper and lower part of the vessel bodies, the vessels formed a far-reaching network and converged into larger vessels. In addition, I could differentiate arterial and venous vessels within these bodies. The severed vessels started from the upper part of the mass in a bunched form. Here they entered on each side of the pharynx into the rivet. We could not determine where the stems originated due to the manner in which the gut had been removed. The arterial part of the rivet seemed to be braided throughout with a venous mesh. On the base of the rivet, many (arterial?) vessels collected into stems, which spread out by the organs of the digestive system but also into the liver itself. The arrangement of the rivet described above was not the same as that in the tuna. The venous part of the rivet behaved quite differently. It did not originate from the portal vein. Instead, the portal vein ran completely and directly to the portal area, where it spread out into both of the long, flat lobes of the liver. The liver vein stems on the other hand, instead of immediately reaching the sinus of the body veins, continued along the base of the rivet and supplied them with a great number of vessel bushels66, while on the upper part of the rivet, these vessels collected again into large reservoirs. Because these reservoirs were severed when the gut was separated from the upper body wall, we could not determine how the vessels continued. Overall, only the general structure could be determined because of the decomposing condition of the gut; how far we can expand and supplement these aforementioned findings will depend on further examinations. The kidneys of L. nasus do not lie in the anterior-most part of the body cavity as they do in the tuna, but rather in the posterior region of the body cavity, as is usually the case in sharks. The separation of the spleen into a large number of little lobes caught our attention, as well as the unusual thickness of the ductus choledochus, which is a result of its thick walls. Completely surrounded by a muscular tissue characterized by distinct longitudinal striations, it descends into the beginning of the gut where the spiral valve is found. After dissecting out the eye, one finds on the bottom of the eye socket a tissue composed of twisted vessels, whose connection could not be determined any further67. I have searched for rivet in the body cavity of various sharks and rays of the family Scyliorhinidae or in the genera Galeorhinus, Squatina, Mustelus, Etmopterus, Omyxus, Sphyraena (ihihru), but I have not found any analogous structures in any of them. The individual genera within the shark family possess many anatomical peculiarities that we should not be surprised by these differences. In addition, the rays of the genera Myliobatis, Raju, Taeniura, Torpedo, and Rhinoctenias which I examined also showed no analogous structures. The liver of L. nasus does not possess the exquisite radiating structure of the liver veins as seen in the tuna, although the vessels do diverge slightly over long stretches.

55 Miller's description of the gut vasculature in L. nasus implies a different style of heat exchange than occurs in the tuna. Based on Miller's descriptions, the gut rivet of L. nasus serve all of the visceral organs including the liver. In this tuna gut, the rivet are positioned between the liver and the other visceral organs. The result of this arrangement is that the liver in T. thynnus is cold in relation to the digestive organs and the liver in L. nasus is warmer as it is next to both of the liver. An arterial blood flow route to the rivet must first pass through a heat exchange. Similarly, all blood leaving the rivet, including blood from both portal and liver vein-origin, must also pass through an exchange. In this way, all of the visceral organs, including the liver, are thermally insulated from the cold gills. See Carey et al. (1981) for more information on this issue. See also Fig 3 for a schematic of the visceral circulation in L. nasus.

56 These ventral vessels to which he is referring make up the orbital vein, which is a countercurrent heat exchanger which allows the temperature of the eye, brain and ocular muscles to remain elevated above the gills. See Bloch & Carey (1985) for more on the cranial rivet blood in warm sharks.
The different vessels which make up the hepatic portal vein enter the liver individually, which is a common arrangement in fishes. Rathke has reported a few examples. However, the unusual *renis* that occur at this transitional location represent a structure that has not been observed until now. Likewise, no case has been reported which could, even to a small extent, be considered analogous to the *renis* of the arteries of the digestive system. The idea that the arteries of the digestive system of all animals form anastomosing branches of the first, second, and third order is not supported in this case. The network of vessels within the *reni* converges into one or a few stems which continue from the *reni*. A mesh-like distribution of an *artery* without the development of a new stem may have some characteristics of a true *renis*, yet such a structure is more similar to the usual anastomosing behavior of the small arteries, which often form net-like structures long before diverging into capillary networks. The dissolution of an artery stem into a plexus that is not designed to make distribution of blood easier, but rather collects the blood into a new stem, points to an undiscovered function for the particular arrangement of these structures. If one were to compare the visceras-renis of the tuna with similar structures in other animals, one would realize that they not only represent some of the few true *reni* known, they are the most elaborate structures of this kind known to date. Without a doubt, an explanation of the function of the *reni* lies within the *renis* themselves.

Renis are known currently to be found in the following locations: the extremities of *Lora, Tursius*, the sloth, and the antarctic, in the tail of the latter, on the *carassius ceratocephalus* of the ruminants, on the *arteria opthalmica* of some mammals and birds, on the penis of the bird, on the *vermis lancea* and the interarterial arteries of the dolphin, and on the so-called carassial gland of the zor. The existence of such a formation can be attributed partly to a mechanical cause, as can be recognized by the increase in surface area and the small size of the vessels which result in a local slowing of the blood flow relative to the speed in the other parts, due to the effects of friction and capillary action, which increase within these formations. The *renis* of the *carassius ceratocephalus* is a good example of the above phenomenon. It is strange that the animals which possess true *renis* in their extremities, such as the sloth and *Lora*, stand out due to their sluggishness. On the other hand it is possible that the arterial *renis* in the extremities and tail assist blood flow by essentially bypassing obstacles to flow presented by the continuously contracting climbing muscles. The latter hypothesis cannot be used to explain the existence of *reni* which are not exposed to muscle pressure, such as the *renis* of the *carassius ceratocephalus* of the ruminants, *carassius* in frogs, and the arterial and venous *reni* of the tuna and *L. narua*. According to Rappi's observations, in animals with a *renis* of the *carassius ceratocephalus*, the *arteria vermis lancea* does not supply the brain with blood. This shows quite clearly that in these cases, more of a retardation of the blood flow is intended. This explanation has the advantage that it can be applied to all *reni*, although the reason for the local retardation of the blood flow relative to other areas remains a mystery. For the arterial and venous *renis* of the tuna and *L. narua*, one could apply this explanation in the following way. The usual arrangements of the portal vein system in all animals will most likely be the reason for a local slowing of the blood flow in the capillaries of the gut, spleen, and liver. Because the blood coming from the gut, spleen, and pancreas must pass through a second capillary vessel system, namely that of the portal system of the liver, the blood flow in the vessels of the whole digestive system must be a little slower than in the other parts of the body, where the blood, after it overcomes the resistance of friction and capillary action of a simple capillary system, immediately reaches the general circulation. The *renis* of

the portal vein in tuna will slow the blood flow even more than it does in the portal veins of other animals. The thousands of fine vessels through which all blood of the visceral portal veins must flow before reaching the liver represent additional resistance and because of that, the blow flows even more slowly than in the capillaries of the gut and portal vein branches of other animals.

The rete of the arteries of the digestive system in tuna represent yet another obstacle which affects all of those areas downstream of the rete. For this reason, the passage of blood through the vessels of the gut, spleen, and liver is slowed even more. In the tuna, one might conclude that the rete of the portal vein have something to do with the liver. However, the same could not be said about the the rete in L. naras, in which the portal vein takes no part. The above reasoning also is consistent with the two visceral rena found in L. naras. The blow flow is slowed to the same degree in the same areas. The origin of the arterial part of the rete could not be found in L. naras, with regards to the resistance to flow resulting from the venous rete, it is the same for the entire digestive system, regardless of whether the slow CWdown occurs before the blood enters the liver or after. In both cases blow flow in the entire digestive system slowed.

Given what we know, it cannot be determined whether this explanation is correct. The difference between the arrangements of the venous parts of the rete in the tuna and L. naras supports this theory. Because the visceral portal blood must pass through rena en route to its union with the rest of the venous blood, the flow of blood throughout the entire digestive system is affected, but the quality of the blood is unchanged for its passage through the liver. The last assumption is only possible in tuna, where the venous rete are found before the blood enters the liver.

We cannot conclude with certainty whether a quantitative change of the blood takes place in the rete of tuna and rete in general. However, there are several reasons for not abandoning this idea.

The lymphaticplexus and its transition into lymph glands, which mainly are made up of fine branches of lymph vessels, offer a good parallel to the blood vessel formation mentioned here. What are the lymph gland vessels other than the lymphatic vessels of the lymphatic vessels between the vasa afferentia and efferventia? With regard to the lymphatic rete, the key to their function lies in their increased surface area, the qualitative changes that occur there and the chemical influences exerted there. Exactly the same was concluded about the analogous vascular rete of the digestive system.

Perhaps the main reason for the peculiar temperature, first reported by J. Day43, lies in the rete and the chemical action of the vessel walls and the blood. He observed a few years ago that Katsuwonus pelamis had a temperature of 37.3 °C in water that was 26.9 °C. According to reports from fishermen, the common tuna, Thunnus thynnus, is alleged to be warm-blooded and according to the same reports, other species of this genus have an elevated temperature as well. J. Day suspects that the high position of the kidneys near the gills is related to heat production in tuna, in that the gill nerves are so extraordinarily large and furnished with large ganglia. It is unlikely that this hypothesis is correct. One can hardly conclude something about the function of an organ merely by its position. For example, the corpora suprarenalium42, which lie close to the kidneys, have no physiological relationship to them; they could just as well be positioned in the pelvic region or the thorax, and often corpora suprarenalim and kidneys are completely separated from one another. Attempting to infer the physiological significance of a structure merely from its position in the body is to be inappropriately the examples of the Wolffian bodies44, the kidney, the corpora suprarenalim, and the testes.

From Katsuwonus pelamis, which J. Day examined exclusively, while observations of the common tuna were done by fishermen, we have no knowledge of the presence of rete45.
the other hand, one can not doubt that such an exquisite structure might be shared by the various species of the genus *Thunnus*. Because the extraordinarily large intestinal nerves observed by Mr. Eschricht not only pass through the retina, but branch there as well, it is more or less probable that unusual chemical processes take place there. With respect to the temperature of various body parts of living fish, namely the retina and their associated organs, the validity of one of this theory will soon be discovered. Moreover, observations about the temperature of *Lamna nasus* may become just as important.

VIII. An analogs of the peculiar structure of the liver vessels

Once the overall essence of the aforementioned structure was understood, I began a search for analogs in other fishes. We could not find anything similar in our freshwater fishes. Meanwhile, I was especially eager to examine other scombroids. In *Caranx trachurus* I was unsuccessful in finding analogous blood vessels. The specimens of *Scomber colias* that I was able to examine had no gut, meanwhile I found that the mackerel, *Scomber scombrus*, possesses a liver structure far different from the tuna and it possesses no retina. On the other hand, in *Austro estuarii* from the Mediterranean, I found the beginning of a radiating formation of the liver veins without a sinus. While examining many other Mediterranean fishes which were sent to the anatomical museum from Doctor C.W. Schultz (now in Naples), I found only one example of a radiating formation of the liver vessels. While identifying and classifying the fishes of the Schultz collection, I found in one container two large, separate liver lobes along with (but not attached to) the digestive tract of a large elasmobranch, which I identified as such because of its dense pores and spiral valve. The completely flat liver lobes with parallel sides and rounded ends obviously belonged together, the first is 30 cm and the other is 20 cm long. Both are 9 cm wide. All vessels enter and exit on the side edge of one end of the liver lobes, from which the entire liver lobes can be inflated. These vessels stems run superficially and lengthwise along the flat area of the lobes, without creating a sinus. They send many oblique, partly parallel, partly (on the end of the liver) radiating branches to the periphery in such a way that the vessels resemble a feather. Upon inflation, this radiating distribution appeared only on the flat side of the liver. All of the vessels entering into the bluntly cut end of the liver also displayed this behavior. Judging from the size of the liver, it could only have come from one of the largest bony fish or an impressive cartilaginous fish from the Mediterranean.

The Schultz collection did not include any tunas. In addition, none of Cuvier’s descriptions of livers in other tunas are consistent with this liver. I examined juvenile *Thunnus thynnus* myself, the liver lobes being three-sided. The description of the two-lobed liver of *Thunnus alalunga*, where one of the lobes is the shape of a playing-card-heart and the other three-sided, does not also match the liver in question. It resembles the liver of *Sarda sarda* more closely, but this fish is only supposed to reach a maximum of 65 cm in length. Cuvier says that the liver of *Sarda* is separated into two lobes in which the left lobe occupies about a third of the width and length of the body cavity, whereas the right lobe is a little narrower. The liver lobes in question are of uneven length, have the same width and are longer than they are wide: *Almias guadiz*, *Argyrosmus regius* and *Coryphaena hippurus* also belong to the large bony fishes of the Mediterranean. The liver of the latter is completely different from the one in question according to Cuvier’s description of it. Cuvier did not report anything about the liver of *Argyrosmus regius*, and unfortunately, the large specimen which was caught and sent to us from the North Sea had already been gutted. However, Cuvier’s remarks about the liver of *Argyrosmus holaspides* from the Cape suggest that the liver from this fish also does not match the one in question. I received the gut from a large, fresh-swordfish which was caught in Swinemünde during my stay there and was able to determine that the liver of this fish, also, is not a match.

Thereafter it became more likely that the liver lobes with the radiating vessel structure and the gut of a large elasmobranch, which were found together in the same specimen jar, did indeed belong together. Certainly, the well-preserved rays and sharks of the Schultz collection did not possess any such radiating liver vessels, even though the shape of the liver in question suggests that it is from a shark. For the most part, the rays and sharks of the Schultz collection of the family Syliorhinidae, and the genera *Emperor* *Melastus*, *Galeorhinus*, *Squatina*, *Oxynotus*, *Raja*, *Rhinachus*, *Taenura* and *Myliobatis* possessed well-preserved spines and could be examined. One specimen of *Alopias vulpinus* from the Schultz collection was gutted. The head of a large hammerhead shark, *Sphyraena mallets*, was also found. The
gut and liver could belong to either one of them. I could only compare the gut of a small specimen of Sphyraena tiburo, which was brought by Mr. Erman from Brazil. This comparison showed that the shape of the liver is for the most part similar. Both liver lobes were very long, narrow and flat, but they were of the same length. The position of the vessel stems was similar, but the radiating or feather-like distribution of the branches was missing. The other digestive organs seemed to match. Dr. Schultz answered by mail that the liver might belong to Sphyraena malabarica. I’m very sorry that this point cannot be made absolutely clear and beg natural scientists who have the opportunity to examine the specimen of the genus Sphyraena to determine whether or not this species indeed possesses this liver structure, in contrast to Sphyraena tiburon. The radiating structure of the liver vessels and the retia of the portal vein and gut arterioles are seemingly unrelated. The liver of Aactus rochei, which shows a hint of the radiating liver structure, and the unidentified liver described above possess no retia. The fact that the radiating structure of the liver veins is unrelated to the retia was mentioned earlier. The reason for such a structure of the liver is completely unknown.

72 Sphyraena tiburon is another species of hammerhead shark. Miller examines this species because he suspects that its liver in question belongs to Sphyraena malabarica, but unfortunately he has no specimens of S. malabarica to examine. The best he can do is compare the vessels of the closest available relative, which is S. tiburon.

73 Other than the gut of this animal Dr. Schultz only had the gut from a large shark. The latter was packed in his bags from Palermo and sent to Berlin, and everything related to roes except for the liver which he had enclosed in a specimen jar. The liver of the various sharks that I examined showed only the usual arrangement of blood vessels. Lorenz Nexon happily showed a hint of the disorganized distribution of the liver vein branches. If the liver lobes in question and the gut are from a large shark, they most certainly are not from Lorenz Nexon. The spleen doesn’t match at all either (footnote of the author was the translator).

74 The issue of to whom these mysterious vessels belong is deferred to the supplement to this article. They are from Allispa virgata, the common species of shark.

75 Usually, there does seem to be a relationship between the presence of the kind of visceral retia seen in T. hydraeus and the presence of the aforementioned radiating structure of the liver vessels. In the supplement to this article, we discover that Allispa virgata was the rightful owner of the vessels in question (the one with the peculiar radiating structure of the liver vessels). We also learn that Allispa virgata possesses visceral retia much like those seen in T. hydraeus. One might argue that this could indicate a relationship between the presence of visceral retia and radiating liver vessels is induced by the fact that Lorenz Nexon possesses visceral retia, but does not display the radiating liver vessels. However, it is interesting to note that a major difference exists between these two visceral blood exchange systems. The visceral retia found in T. hydraeus and A. virgata are located between the liver and the digestive organs. In contrast, the two visceral retia found in L. nemus are located on the other side of the liver, between the liver and the heart. This is the reason for this anomaly, simply stated, is that the liver of T. hydraeus and A. virgata are cold, whereas the liver of L. nemus is warm. We believe that it is not a coincidence that T. hydraeus and A. virgata, which both possess the same relative position of the visceral retia, also display a radiating structure of the liver vessels. Aactus, which has a hint of the radiating structure on the liver does not have visceral retia, but does have lateral retia serving the musculature. It is not known if these structures in the liver in Aactus consist of both arteries and veins, or if they could act as a countercurrent heat exchange.

76 Aactus does have a hint of the radiating structure on the liver but does not have visceral retia, whereas Allispa virgata (the owner of the unidentified liver) does possess visceral retia mesenterica, which is for all intents and purposes are completely analogous to those in T. hydraeus. Miller assumes that this animal lacks visceral retia because there are none attached to the liver, which is where they are located in T. hydraeus. However, in the supplement to this article, we learn that the visceral retia of A. virgata are located close to the organs they serve, instead of adjacent to the liver.

77 There has been no literature on this point since Eschricht & Miller brought it up in 1877. We believe that these visceral liver vessels probably act as a crude heat designed to conserve some of the mesodermal heat generated in the liver. We find it interesting (and important) that it is only endothoracic fishes which have been shown to possess the radiating structure of the liver vessels. In addition, the structure is only seen in warm fishes whose liver does not always benefit from the visceral retia. In other words, it is only seen in fishes whose livers are on the "cold" side of the retia. In contrast, the heat exchange system in L. nemus is such that the liver is served by the visceral retia and is therefore kept "warm." In this species, no radiating liver vessels are seen. One of our future research objectives is to determine the potential for countercurrent heat exchange in these liver vessels.
4. An annotated translation of D.F. Eschricht and J. Müller's supplement to the article on the retia mirabilia on the liver of the tuna. "On the retia mirabilia of the digestive system of Squalus vulpes L., Alopecias vulpes Nob."

Translated with the assistance of Elisabeth Ninjé.

The viscera of the shark described in the last section of the tuna article, which was believed to belong to either Zygarna malleus or Carcarias vulpes Cav., is now known to belong to Carcarias vulpes Cav. , Squalus vulpes L.28 Mr. Duvemoy recently showed (Annales des sciences naturelles, May, 1835), that the valve of Zygarna malleus differs from that in other sharks. Among the elasmobranchs, this valve is typically helical, i.e. its insertion into the gut wall as well as the free edge form a screw-like spiral. In Squalus thalassinus Val., which is the type species of a new genus closely related to Galeus, and in Zygarna malleus, Mr. Duvemoy found a sail-like valve which is attached longitudinally, and which is only rolled up in a spiral-like fashion. He also described a large branch of the portal vein which runs along the free edge of the valve. Because the same structure was found in Zygarna thalassius, it seemed most probable that the previously mentioned viscera from the Schultz collection with the structure pinnatifida of the liver vessels did not belong to Zygarna malleus. Because the spiral valve in those viscera was screw-like, it was most probable that the viscera belonged to Squalus vulpes, which, aside from Zygarna malleus, was the only other shark in the entire Schultz collection whose viscera had been removed. Mr. Lichtenstern allowed us to examine another specimen of Squalus vulpes in the zoological museum and it helped to confirm that the viscera in question were indeed from Squalus vulpes. Although the fish had been sent from the Cape, its anatomy was virtually identical to the specimen of Squalus vulpes from the Mediterranean. While examining this fish, I found not only the Structure pinnatifida of the liver vessels, the same shape of the liver, spleen, and pancreas, but I also convinced myself that the place in which Cuvier put Squalus vulpes L. is not correct. It indeed belongs with the genera Carcarias and Lamna, to the taxon of sharks which lack spiracles and possess no anus and fin, but it can not be included in the genra Carcarias. Squalus vulpes has a screw-like spiral valve. As I’ve found in Carcarias vulgaris and Carcarias glaucus, the true Carcarias possess the same sail-like spiral valve as those within the genus Zygarna and Squalus thalassinus Val. The specimen of Squalus glaucus brought by Mr. Meyen was found to possess a longitudinal flap. But because Carcarias glaucus Cav. and Squalus glaucus Bloch both have the same coloration of Squalus thalassius Val., more definite proof was necessary. I obtained this by examining Carcarias vulgaris and Carcarias glaucus at the zoological museum. The latter is the specimen described and illustrated by Bloch. Therefore, the true Carcarias possess a longitudinal sail-like gut valve, whereas Squalus vulpes possesses a screw-like valve, as do those of the genus Lamna of the same family. The teeth of Carcarias do not differ greatly from those of Squalus; in both, they are triangular and flat, but only in Carcarias are they serrated. The lack of an anal and second dorsal fin and the unusual length of the upper lobe of the caudal fin are unique to Squalus vulpes. I therefore, along with Rufflesque, place Squalus vulpes L. and Carcarias vulpes Cav. into the new genera, Alopecias Nobis and Alopia Rufflesque. At this time there is only one species, Alopecias vulpes. The family of sharks that possess anal fins and lack spiracles therefore includes the genera Carcarias, Alopecias, and Lamna. The name Alopecias has been used in ichthyology for a long time. Artedi synonymia piscium ed. Schneider. Lips. 1789. 134. 138. With regard to the distribution of the sail-like valves, I could not find them in other genera of sharks or rays. We examined the genera: Lamna, Scyllium, Galeus, Mustelus, Spinax, Centrino, Squatina, Rhombatus, Torpedo, Nanci, Ray, Myliobates. They all have the screw-like spiral valve. The sail-like longitudinal valve is therefore only presently known in Carcarias, Zygarna and Squalus thalassinus Val. The viscera of the genera Notidanus, Selache, Cestracion, Symnas, Prius, Rhina, Anacondula, Propertuga, Rhinoptera, Cephalopterus have not been examined.

28 In this first part of the supplement we do not use valid species names because the focus of the discussion concerns synonymy and validity of species names. In the second part of the supplement concerning retia we use valid names.
29 Once again, it is unclear to which case he is referring, although it is most likely that he means the Cape of Good Hope at the southern tip of Africa.
The second part of the supplement concerns the retina somalia observed on the gut of *Alopias vulpinus*, which I could not find on the viscera found in the Schultz collection which had been separated from the liver. A large tassel-like *rete* consisting of many hundreds of ray-like vessels which converge from all sides and whose blood enters the stem of the portal veins at a common area, still some distance away from the liver, is located on the side of the stomach. They proceed in a somewhat parallel, bunched manner from the walls of the stomach and have a thickness of 0.5 and 1.0 mm. The vessels anastomose between one another. Shortly before the entrance of the portal veins into the liver, the portal veins receive yet another small *rete* from the uppermost part of the stomach or from the pharynx. The stem of the portal veins which ascends from the gut receives small bundles of veins from the spleen, pancreas and a very large *rete* from the spiral valve, long before it receives the large *rete* of the stomach. The *rete* associated with the spiral valve is of the same size of that associated with the stomach. As is the case in all other elasmobranchs, a large gut vein, the beginning of the visceral portal vein, ascends in a screw-like fashion from the lowest part of the gut, closely positioned along the surface of the gut. In *Alopias vulpinus*, one finds at this position a swelling as far as the *rete* stem follows this part of the gut, where the spiral valve is found. The swelling is created by the *rete*. All of the vessels which originate from that part of the gut create many fine, parallel vessels which now and then anastomose between one another and are packed together in the tightest possible way, so that the walls of the gut in this area are not visible because the vessels are so tightly packed. The vessels enter the stem from both sides, either in a straight line or at a slight angle, so that the whole structure strongly resembles the shape of a feather fan. The *rete* stops where the spiral valve ends. Here on the rectum, the blood vessels have the usual tree-like branching formation.

This type of *rete* is different from those on the liver of the tuna and the *rete* of *Lamna nasus*, in that the tassel-like vessels going in one direction collect into new stems. It is more similar to the *rete* found in the pyloric caeca of the sharks, in which the convergence of the *rete* vessels is also not complete. Within the *rete* of *A. vulpinus*, the visceral arteries behave in a manner similar to that of the veins. I have searched many rays and sharks for this structure, but could find it nowhere else. Thus far, the fish in which *rete* have been described are the bony fish, *Trigla hemiodon* and the cartilaginous fishes *Lamna nasus* and *Alopias vulpinus*. Given the opportunity, I will illustrate the *rete* of the latter. I must also mention the very long, channel-like gall bladder of *A. vulpinus* which is wound in a snake-like fashion and which for the most part covered by the tissue of the larger liver lobe. I will include as an illustration of this structure in a subsequent publication.}

80 We use the valid names in this section because it should not create any confusion.

81 Interestingly, this is the first and last mention in the literature of the visceral *rete* of *Alopias vulpinus*. Not only has the subject been ignored, the usual endowment of the *thysanuran* viscera has been misrepresented, e.g. Fritsch & Müller claim it is true. In a summary table of the different kinds of *rete* seen in pelagic fishes, Carey (1992) shows that the thresher possesses eye and brain *rete*, most likely possesses muscle *rete*, but does not possess visceral *rete*. It has since been confirmed that the thresher possesses significant muscle *rete* (Ishii & Chabot 1995). Clearly, more work needs to be done on the visceral vasculature of *A. vulpinus*.

82 Regrettably, there are no subsequent publications by Fritsch or Müller on any of these subjects.
5. Plates from the Eschricht & Müller paper and a supplementary figure

Plate I. Convex side of the tuna liver from the anatomical museum.

A. Sinus of the liver veins on the convex side of the right liver lobe. a. Stem which originates in the sinus and exits the surface of the liver.

B. Sinus of the liver vein from the middle and left liver lobes. b. Stem which originates in the sinus.

C. Radiating liver vein branches.
Fig. 4. Whole liver from a 250 kg bluefin showing the three main liver lobes, anterior view. This photograph is analogous to Plate I in the original text. The tips of the hemostats indicate the two large branches of the hepatic vein which exit the liver and proceed toward the heart. Note also the prominent radiating pattern on the liver lobes which is due to the antiparallel arrangement of liver arterioles and venules. We propose that this arrangement helps conserve metabolic heat produced in the liver and is responsible for the proximal/distal temperature gradient which occurs along the liver lobes as reported by Carey et al. (1984).
D. Right liver vein stem.
E. Left liver vein stem from the middle and left liver lobes.
F. Right liver lobe.
G. Middle liver lobe.
H. Left liver lobe.
I. Gall bladder. T. Swelling of its ruling duct.
P. Common bile duct appearing behind the rete V. of the middle liver lobe, positioned between the blood vessels of the pyloric caeca and descending into the pars pylorica of the gut.
K. Stomach, pulled to the right.
K'. Side branch of the stomach, pars pylorica of the same.
L. Pars pylorica of the intestine.
M. Pyloric caeca.
N. Oblique ascending part of the intestine.
O. First descending part of the intestine.
P. Second ascending part of the intestine.
Q. Second descending part of the intestine.
R. Rectum.
S. Spleen.
T. Spindle-like rete of the right liver lobe.
T'. Stomach vein which receives it.
T". Small venous branches from the stomach.
U. Pear-shaped rete of the right liver lobe.
U'. Spleen vein which receives it.
U". Small venous branches of the intestine.
V. Flat rete of the middle liver lobe.
V'. Veins from the intestine and the pyloric caeca which enter the tip of the rete.
V". Stomach vein which enters into this rete.
X. Small rete of the left liver lobe.
X'. Veins of the pyloric caeca which enter it.
Y. Artery of the digestive system.
Y', Y". Both branches thereof.
Y'. The branch that enters at the base of the rete T. and U., branching partly into the right liver lobe, and partly dissolving into the rete. At the tips of the rete, the arterial vessels converge into the arteries, which accompany the corresponding veins to the stomach Z and the spleen Z'.
Fig. 1. Diagram of the viscera of the tuna in situ from the second specimen (Thunnus thynnus) from Montepellier (reduced in size). The stomach is pulled a bit to the left.

A. Ventricles.
B. Bulbus ovarii.
C. Attenuum.
D. Sinus of the body veins.
D'. Tip of the sinus.
a.a. Liver veins.
b.b. Lateral vein stems.
c. Vena jugularis.
d. Vena lateralis posterior.
The latter passes through the kidneys E. and receives veins from the kidneys and the reproductive organs and enters into the muscles of the trunk.
F. Right liver lobe.
G. Middle liver lobe.
H. Left liver lobe.
I. Ombl bladder.
T. Widening at the beginning of the gut bladder.
At this point a few liver ducts enter from the right lobe.
I'. Ductus choledochus.
K. Stomach.
L. Pars pylorica of the stomach.
M. pyloric caeca.
N. O. P. Q. R. S. as in Plate II.
T.O. Roots of the right liver lobe.
V. Area of the middle liver lobe.
X. Roots of the left liver lobe.

Fig. 2. Piece of the right liver lobe.
a. Branch of the visceral artery which spreads into the liver as well as the

I.

b. Rene.
c. Branches of the hepatic portal vein which lead from the liver.
d. Branch of the visceral portal vein which leads to the liver.
e. Artery which leads from the liver.

Fig. 3. Connection of a branch of the visceral artery to the liver and its root, cut open.
a. Artery.
b. Rene.
c. Connection of the artery to the root.

Fig. 4. A branch of the visceral artery with its associated rete, from the injected liver sent from Copenhagen.
a. Artery.
b. Hepatic branches of the artery.
c.d. Branches of the artery into the rete.
d. Rene.
e. Portal vein branches which come from the organs of the digestive system and enter the rete.
f. Arteries which leave the rete and go to the organs of the digestive system.
g. This entry absent in original text. Possibly nerve stems associated with the visceral artery branches and the rete.

Fig. 5. Cross-section of a liver root.

Fig. 6. Main artery stems and kidneys of the tuna from the dorsal side.

A.A. Upper, paired part of the kidneys, over the most anterior part of

the body cavity, just behind and above the gills.
B. Commisure of the paired parts of the kidneys.
C. Lower, unpaired, flatter and narrower part of the kidneys.
C.C. Downward pointing separation of the same.
D. Uroveder.
D'. Bladder.
D''. Urinaria.
E. Sperm ducts.
F. Common sperm duct, positioned in front of the

urinaria and separated from it up to the common ureteral opening.
F. Rectum.
a.a. Anterior roots of the aorta from the first two effenter

villi arteries.
b.b. Posterior root of the aorta from the two posterior effenter

villi arteries.

e. Stem of the aorta between the paired parts of the kidneys.
D'. Posterior kidney arteries from the aorta.
E. Common artery stem of the digestive system arteries

contiguous arteries (Plate II, Y).
E'. Both a.v. branches (Plate II, Y, Y').
F. Arteria antellaris penetrating the kidneys with the vena lateralis posterior.
G. Thinner continuation of the arteries toward the midline, entering the channels formed by the lower spinal processes.
H. Vena lateralis posterior.
H'. Vena lateralis anterior, jugularis.
Fig. 5. Visceral arterial systems of four tunas from Kishinouye (1923): d - *Thunnus alalunga*, e - *Thunnus thynnus*, i - *Katsuwonus pelamis*, j - *Enhyurus affinis*. Note that *T. thynnus* and *T. alalunga* possess visceral retia, whereas *K. pelamis* and *E. affinis* do not. Note also that Kishinouye portrayed *T. thynnus* as having five major visceral retia in this diagram, which is consistent with Eberleth & Müller's and our own observations, but inconsistent with Fig. 6, in which Kishinouye implies that *T. thynnus* possesses only four major visceral retia.

Fig. 6. Diagramatic representation of the vasculat system of *T. thynnus* from Kishinouye (1923). Dark vessels are veins and light ones are arteries.
6. Supplementary figures

Fig. 7. Right and middle liver lobes in a 155 cm (fork length) fixed specimen of *T. thyrsus*. Note the prominent radiating liver vessels on both lobes.
Fig. 8. Ventral view of the same fish described in Fig. 7. The ventricle is pulled anteriorly to expose the membrane that separates the heart from the liver, referred to by Müller as the 'diaphragm'.

Fig. 9. Ventral view of the viscera in the same fish described in Fig. 7. The body walls and gill plates were removed to expose the viscera in their natural positions.
Fig. 10. Close-up of one of the stomach rete from a 250 kg bluefin in which one of the major portal veins leading from the stomach was injected with blue paint. Note that the paint proceeded as an almost linear front across the width of the entire rete, implying that the vessel that was injected is the only venous vessel served by this rete. This linear front also implies that resistance to flow through the rete appears to be uniform across the entire width. Note also the prominent branch of the coeliac artery running across the top of the rete. Smaller white structures appearing to descend off of the coeliac artery into or along the surface of the rete are large visceal nerves.

Fig. 11. Close-up of the connection between a stomach rete, a branch of the coeliac artery and the liver from a 250 kg bluefin. This photograph is analogous to Plate III, Fig. 3 from the Eschricht & Müller text which is enlarged here beside the photograph. The rete has been cut open at this junction to show more clearly the nature of the relationship between these structures. The yellow and blue colors are leftover from a previous injection experiment in which the coeliac artery was injected with yellow paint and a portal vein from the stomach was injected with blue paint. The green color at the point of incision is not due to mixing within the intact rete, but occurred when the rete was cut open and the excess paint wiped off.
Fig. 12. Previous Page. Five major retia from a 250 kg bluefin tuna. Whole retia are in the left column and the corresponding cross-sections are in the right column. Scale bars in the left column are 20 mm, those in the right column are 10 mm. The whole retia are oriented so that the ends attached to the liver are on the right. a - Retia associated with the right side of the stomach. c - Retia which serves part of the cæcum and the ventral part of the stomach. e - Retia which serves the left part of the stomach and attaches near the pylorus. g - Retia which serves part of the cæcum. i - Retia which serves the spleen, intestine, and part of the cæcum. The prominent white structures seen in cross-sections d and e are large nerves which pass through (and perhaps branch) within these retia.

Fig. 13. The same retia depicted in Fig. 12 in situ. The retia depicted in a, c, e, g, and i of Fig. 12 and 13 correspond to the retia denoted by S, CS, SP, C, and SJC in Fig. 1, respectively.
Fig. 14. Cross-section through a piece of liver in which the radiating liver vessels are especially prominent. Note that the vessels which give the bluefin liver its characteristic radiating appearance occur only on the convex (anterior) surface and do not penetrate into the liver interior.

Fig. 15. Cross-section of a caecum rete from a 410 kg specimen of T. thynnus, magnified 40X. Rete vessels were filled with buffered formalin and fixed under pressure to reduce collapse of the vessel walls. Arterial vessels are smaller and thicker than venous vessels and arterial vessels have a significant layer of smooth muscle. Note the approximate checkerboard arrangement of the arterioles and venules. The large circular structure on the left is a nerve (nerve diameter is 0.71 mm) which runs through the center of the rete and possibly innervates it.
Fig. 16. The photographs below are of the visceral *rete* from a 450 kg bluefin tuna. The *rete* on the left is still connected to the liver and caecum. The *rete* on the right has been dissected out of the gut and perfused with saline. The blanched color of the latter emphasizes the fact that the vascular and connective tissue which make up the *rete* are translucent white, and it is blood which gives the intact *rete* its purplish-red color. The drawing to the right of a *rete in situ* is an enlargement of Plate III Fig. 4.
7. The first mention in the scientific literature that tunas are warm-blooded: Two historic papers and their abstracts by John Davy.

His intimate friendship with [Eschricht] continued uninterrupted until his death. In the spring of 1835 he and Eschricht described the *retia mirabilia* on the liver of the tuna, which he suggested to have some relationship to John Davy's observations of the warm-blooded nature of these fish. This suggestion could represent new evidence for the idea that the liver is the seat of heat generation in animal bodies, which was first put forth by Claude Bernard in his investigations of animal thermal topography.

From the homage to Johannes Müller
by Emil du Bois-Reymond, p. 98

In this section we include two papers and their abstracts by John Davy. We include the full papers and their abstracts because, to our knowledge, only one of the abstracts has ever been cited by any worker. It was difficult to locate these papers and they should be of interest to both comparative physiologists and tuna biologists. In addition there are some important differences between what is said in the full papers and what is said in the abstracts. Because the abstracts were written by others, Davy is referred to in the third person. In each case the abstracts were published after the full papers and we present the four in chronological order of publication.

Davy (1790-1868) graduated with a medical degree from Edinburgh in 1814 and was elected as a fellow of the Royal Society of London in the same year. He entered the army as a surgeon and ultimately rose to the position of Inspector General of Army Hospitals. In the course of his service he visited the West Indies and India and was on the medical staff in Ceylon (now Sri Lanka) from 1816 to 1820. Although he published many papers on a variety of topics, he was best known for his research on animal temperature. He made very precise observations of the body temperature of many different animals under diverse conditions. He measured the temperature of a diverse collection of animals including jackals, leopards, tigers, elephants, elk, sharks, flying fish, and adders, to name a few. Davy certainly was not a fish biologist, but he did make some contributions to the study of fishes. In brief biography published in the list of fellows of the Royal Society of London, he is credited with, in addition to his temperature measurements, the discovery of "the connection of the electric columns of the torpedo with the organs of respiration". We are not sure why this was viewed as a discovery at the time, because the nature of the connection is not obvious.

The taxonomic names used by Davy are confusing, but it must be appreciated that he was not an ichthyologist. We are relatively certain that the species to which Davy refers are the skipjack tuna and the bluefin tuna. In the first full paper and its abstract he reports muscle temperature measurements from "the Bonito (Thynnus pelamys)". This is confusing, because *Thynnus pelamys* is an outdated name which refers to the skipjack tuna, *Katsuwonus pelamis*, and not the Atlantic bonito *Sarda sarda*. The title of the paper refers to the genus *Thynnus*, and the implication from the discussion in the paper is that tunas (all five members of the genus *Thynnus*) are warm-blooded. He states that fishers report that *Pelamys sarda* is cold-blooded but based on morphological similarities with the tunas, he thinks that they may be somewhat warm-blooded.

Unfortunately, the confusion is made worse in the second full paper and its abstract. He claims that the measurements were performed on *Pelamys sarda*, which is the old name for the Atlantic bonito, *Sarda sarda*, but, he does not use the term bonito. Thus, for the fish on which he actually made measurements of muscle temperature and found them to be warm-blooded, in the first paper he used the scientific name for tuna and the common name bonito and in the second paper he used the scientific name for bonito and no common name. We conclude that Davy misidentified the skipjack tuna as *Pelamys sarda*. Modern measurements of muscle temperature in bonito, *Sarda sarda* show its maximum muscle temperature does not exceed water temperature by more than 1.8° C (Carey et al. 1971). The other unlikely possibilities are: (1) Davy made
erroneous measurements and his reported values of body temperature are for bonito but do not reflect reality; or (2) the few modern measurements for bonito are grossly inaccurate and bonito are actually warm blooded.

In these texts, Davy reports some measurements of the body temperatures of one skipjack (Katsuwonus pelamis, referred to by Davy as Thunnus pelamis in the first paper and as Pelamys sarda in the second paper) which indicate that the temperature of fane animals is about 10°C warmer than the water they inhabit. His conclusions are based on actual measurements. These are the first reports in the scientific literature of the elevated body temperature of any fish. Most of Davy's subsequent conjectures about how tuna give generate and conserve heat appear quite primitive in light of what we now know about metabolism, thermogenesis and thermoregulation.

In the first paper, Davy reports a datum for a single measurement from a single fish that has a muscle temperature of 37.2°C in water of 26.3°C, which incidentally, is very similar to the muscle temperature reported by Stevens & Fry (1971) for Katsuwonus pelamis caught at sea. In addition, Davy argues that the bluefin tuna (Thunnus thynnus), like the skipjack, is also "warm-blooded" based on reports from "intelligent" fishermen. He also draws attention to the fact that the bluefin is very similar to the skipjack in many regards. It is interesting to note which attributes Davy selects in trying to demonstrate a similarity between the two species. He remarks on the invasiveness of the gills, the unusually large heart, large gills, large amount of blood, and the dark red color of the swimming muscle. Although any modern-day fish physiologist would immediately think of aerobic capacity if confronted with the terms "large gills, large heart, and dark swimming muscle", it appears that Davy had little understanding of the significance of the relationship between these structures. While Davy understands that animals which produce a lot of heat typically have a large respiratory surface, he erroneously concludes that the respiratory surface itself must therefore be the site of heat production.

Another misconception that underlies these texts is that endothermic ("warm-blooded") animals produce heat whereas ectothermic ("cold-blooded") animals produce none. This idea is expressed in a sentence in the second abstract. "(Davy) thinks it not improbable that these fish may possess streams of generating heat peculiar to themselves." In the second abstract, Davy attempts to explain the mechanism by which some fish are warmer than their environment. His approach is at first logical; he looks for other ways in which the warm fishes are different from ectothermic ones. His next step is somewhat strange. Instead of examining the characteristics he lists in the first abstract (such as heart size or muscle redness) or other unique characteristics such as retina, he decides that the "peculiarities" of the blood of these fish, the skipjack tuna, the bluefin tuna, and the swordfish, Xiphias gladius, are the key to answering the question of how these fish generate heat. (It is strange that Davy includes the swordfish in the comparison, since he gives no indication that he suspects it of being endothermic.) The "peculiarity" to which he refers is the fact that the "globules" (erythrocytes) of these fishes are nucleate, in contrast to mammalian erythrocytes which are enucleate. Unfortunately, this line of reasoning is doomed from the start, as the erythrocytes of all fishes (as least those that have erythrocytes) are nucleate. In 1853 it was known that blood circulates and that arterial and venous blood differ in color. But, the fact that the pigment in red blood cells, hemoglobin, reversibly binds with oxygen in respiratory organs and releases it at the tissues was not known until 1864. Davy illustrates this general lack of understanding of the respiratory function of blood in the last sentence in the first paper: "... especially the question, Whether any oxygen is absorbed by the blood in the lungs, and carried into the circulation."

Although the actual mechanism he proposes sounds downright ridiculous to the modern ear, it is worth examining. The fact that Davy assumes the site of heat production to be the erythrocytes is at least partly consistent with his conception that heat production occurs primarily in the gills (since the gills contain a conspicuous amount of blood). The details of the mechanism also show that Davy understood that the consumption of oxygen is linked to the process of thermogenesis. His theory about separations of charges within the erythrocyte is his attempt to explain how exactly tuna achieve rapid rates of oxygen consumption, and therefore, heat generation.

Davy makes one other important observation and that is the unusually large size of the branchial nerves found in tunas. It is interesting that Eschricht & Müller make a similar observation about the unusual size of the visceral nerves found in the bluefin. To this day there are no explanations in the literature of the function of these large nerves, and, as far as we know, there are no subsequent studies of these nerves. We have been able to confirm in our dissections that these nerves are not only large, they are in fact an order of magnitude larger than the analogous nerves in mammals of comparable size.

Is the four tests that follow, endnotes are denoted by an number in brackets. In addition, some units are converted to metric and some current species names are given. In these cases the additions to the original text are set apart from the text with brackets. The only changes made to the text are that genus and species names have been italicized.

On the temperature of some fishes of the genus *Thynnus* by John Davy, M.D., F.R.S., Assistant-Inspector of Army Hospitals. Read before the Royal Society of London. Communicated by the Author.

It is commonly believed and asserted by naturalists, that fishes generally, and without exception, are cold-blooded; thus Linnaeus, in his "Regnum Animale," characterizes them in relation to their blood, by "sanguine frigida" [1]; and Baron Cuvier, our latest and highest authority, not only admits, but undertakes to show, that it must be so; thus in the chapter of his "Histoire Naturelle des Poissons," on the general character and essential nature of fishes, he says, "Ne respirant que par l'intermédiaire de l'eau, c'est-à-dire, ne profitant pour rendre à leur sang les qualités artérielles, n'est de petite quantité d'oxygene constente dans l'air mêlé à l'eau, leur sang a dû rester froid" [2].

[Bringing through the water medium, i.e., only profiting from the small quantity of oxygen contained in the air dissolved in water, to reestablish the arterial quality of the blood, their blood had to remain cold.]

It was many years ago, on a voyage to Ceylon, that I first met with an exception to this universally received opinion; it was in the instance of the Bonito (*Thynnus palamys*, Cuv. and Valen.), whose temperature was 99° of Fair. [37.2°C] in the deep-seated muscles in the thickest part of the fish a little below the gills, when the surface of the sea, from which it had just before been taken, was 80.5 [26.9°C]. The difference being the remarkable one of eighteen degrees and a half [10.2°C].

This fact necessarily made a strong impression on my mind, and a year or two ago, when examining the heart and gills of the tunny of the Mediterranean (*Thynnus vulgaris*, Cuv. and Valen.), my attention was recalled to it, on finding that the latter were supplied with nerves of unusual magnitude; that the heart like that of the bonito, was very powerful, that the fish equally, or even more, abounded in blood, and that its muscles, generally like those of the bonito, from the same cause, were of a deep red color. It immediately occurred to me, that its temperature also might be high, and the result of careful inquiry amongst the fishermen of most experience in the tunny fishery confirmed the conjecture. All who were asked, declared that the tunny is warm-blooded, and one of the most intelligent of them, when questioned as to the degree of heat, said it was much the same, or little less than that of the blood of a pig, when flowing from the divided vessels of the neck in being killed. And this man was very competent to give an opinion on the subject, having been much employed in the fisheries on the Sicilian coast, in which the viscera of the fish are the perquisite of the common fishermen, and are immediately taken out when the fish are caught.

From the tunny, I extended my inquiries to other fish of the same family, and learnt, that the analogy holds good, applied to all the species of the genus *Thynnus* of Cuvier and Valencieus, with which the Maltese fishermen are acquainted, viz. besides the two already mentioned, *T. palamys*, *T. vulgaris*, *T. brevipinnis* (Esquimys ailetargus), *T. thiunnus* (*E. atriceps*), and *T. alalunga* (*T. alalangus*), all of which abound in blood, have a powerful heart, red or reddish muscles, and so on, as I have ascertained by particular examination, have their gills amply provided with large nerves. Not having been able to procure any of these fish alive their exact temperature, of course, I have not been able to determine, but from the reports of the fishermen, it would appear that the common tunny is the warmest of the species; and in accordance with this, I have found its branchial nerves proportionally large.

These nerves (the branchial), immediately after quitting the cranium, enter or swell out into glio-genia of considerable size, and more or less connected together, from which five principal trunks proceed, the first four chiefly to the branchiae, and are the respiratory nerves; the fifth, the lowest, to the branchiae and stomach. In point of magnitude, these respiratory nerves almost rival the electrical nerves of the torpedo, and their origin is very similar, and their division and associations, but with that marked difference between them, that the torpedine nerves are entirely destitute of ganglia.

The respiratory nerves of the other species of *thynnus* [sic] which I have examined, very much resemble the preceding. Those which are smallest belong to *Thynnus brevipinnis*, and yet, even in this fish, in comparison with the fish of other tribes, the respiratory nerves are large, and their ganglia considerable. This fish, perhaps, may be considered as a link between the tunny family and the mackerel [sic] on one side, and the pelagidae on the other; and the respiratory nerves of one of each of these genera of fish, which I have dissected, viz. of *Scomber pneumatophorus* (S. japonicus) and *Fenamys torda*, have approached in magnitude those of the thynnus [sic] less mentioned. What the temperature of these fish is, I have not had an opportunity of determining by trial; according to the statement of the fishermen I have consulted, they are all cold-blooded. Reasoning from analogy, the natural inference is, that they will be found to be of somewhat higher temperature than other fishes less amply supplied with respiratory nerves.

As regards the rationale of the high temperature of the thynnus,
there appears to me less difficulty, than in accounting for the electrical power exercised by the torpedo, and other electrical fish. The peculiar function of the latter is performed by means of a particular organ, the most striking feature of which is a vast apparatus of nerves; but this organization bears little or no analogy to any other natural, or to any artificial process hitherto known, by which electricity is generated. Not so the respiratory apparatus, and associated organs in these fish of high temperature; they are essentially analogous in organization to the warm-blooded animals of the other two classes, and hardly more different from those of the mammals are from the respiratory apparatus and associated organs of birds. The function of respiration in water is commonly considered the same as in the atmosphere; the same change, it is supposed, takes place in the blood; the same change is ascertained to take place in the air dissolved; and, increase of temperature in one instance and the other, is referred to the conversion of carbon into carbonic acid. The difficulty is not as regards the kind of effect, but the degree of that effect; not an augmentation of one or two degrees above the temperature of the surrounding medium, but of many degrees. The consideration of some of the peculiarities of these fish may help to diminish this difficulty, which I have little doubt will be removed entirely when we are better acquainted with their structure, and better acquainted with all the sources of animal heat.

The most important peculiarities are, I believe, chiefly the following: a large and powerful heart; abundance of blood; large gills; and a very large apparatus of branchial nerves; all which may be considered as concerned, either directly or indirectly, in the generation of heat: and the circumstances for its preservation are hardly less remarkable, as the manner in which the gills are defended by peculiarly strong opercula, abounding in fatty matter, and the deep situation of the principal blood vessels, surrounded by thick muscles, and in addition, the aorta surrounded by the principal abdominal vasa, the kidneys, stomach, and liver. Moreover, the habits of these fish may, in some measure, contribute to their high temperature. They are frequently to be seen near the surface, and seem to have a delight in springing into the atmosphere. Aristotle, speaking of the tunny, says, of all fish it most enjoys warmth, and on that account swims near the surface, and frequents sandy shores. I quote from the old Latin translation of Theophrastus Gaza. "Thymi omnium maximse piscium gaudent tepore et ob eam rem arenam et littora adeunt; per summa etiam maris innatant, quo teporis potius tur;" [3] con founding, as I believe in this instance he has done, a fondness for warmth, with the habits connected with its production. In this enumeration of circumstances which may contribute to the high temperature of these fish, both as regards its generation and preservation, I have intentionally been very general. In the present state of our knowledge, I apprehend it would be useless to be more minute. It is not improbable that these fish may possess means for generating heat peculiar to themselves, and of which at present we have no adequate idea; and the situation of the kidneys, of which a considerable portion is even higher than the stomach, and posterior to the gills, of large size, and abounding in blood, and well supplied with nerves, would lead to the conjecture that these organs, in the function of imparting heat, may possibly act a part. Still, however, reflecting on the great proportional size of the branchial nerves, and guided by analogy, it is difficult to resist the conclusion, that they are not principally concerned in the performance of the function in question, and that these nerves, as means, are so very ample on account of the element inhabited, and the proportionally greater energy of function required to produce the same effect of elevation of temperature in water and in the atmosphere. On any other view, it seems difficult to account for the branchial nerves of these fish being proportionally very much larger than the pulmonary nerves of the mammals, and vastly larger than those of birds, of all animals the warmest [4].

Whether there is any immediate relation between the ganglia on the branchial nerves and the generation of heat in these fishes, is uncertain, and must necessarily remain so, as long as there is any doubt concerning the use of ganglia. The absence of ganglia on the principal nerves of the lungs of man [5], and I believe of the mammalia generally, and of many birds, would lead to the inference that the nerves, in the instance under consideration, rather than the ganglia [6], are chiefly instrumental; and that the latter are in some way subservient to the former; but whether for giving sensation to the branchia, or for imparting extraordinary secreting power, so as to change the blood, or for some other purpose, remains to be ascertained.

In concluding, I would remark, I am very sensible that this paper is in many respects greatly imperfect. I have been induced to contribute it chiefly with the view of calling attention to the subject, with the hope that others will engage in the inquiry as opportunities may offer; and, by more extended and minute observations, supply many desiderata, as the exact temperature of the different species of thymus [sic], the temperature of the blood coming from and returning to the gills, the minute peculiarities of the structure of these fish, and their habits. It seems not improbable that the investigation, if followed up, may not only throw light on the function of respiration in these fish, and on the production of their high degree of temperature, but also that it may aid in elucidating some obscure parts of the theory of respiration in general, in connection with that of animal heat, especially the question, Whether any oxygen is absorbed by
the blood in the lungs, and carried into the circulation.

[References and footnotes]
[1] Systema Naturae, tom. i. p. 18
[4] The size of the pulmonary nerves of birds, and indeed of their respiratory nerves generally, so far as my observations have extended, is so small as to be truly astonishing, compared with their very high temperature. And, on the hypothesis of nervous influence being essential to the production of animal heat, through the agency of respiration, the necessary inference seems to be, that birds require less of this influence than any other description of warm-blooded animals, owing to their peculiarities of structure, both in relation to the diffused aerial means they possess of generating heat, and their peculiar means, in their covering of feathers, of preserving it; and, owing probably farther to their less expenditure of it, from the peculiarities of some of their principal secretions, especially those of the kidneys, skin, and lungs, their kidneys secreting an almost solid urine; their skin exuding little moisture, and that not in sweat, but entirely by insensible perspiration, and their lungs, though exhaling more, from the nature of the function they perform, yet less than might at first be supposed, part of the aqueous vapour contained in the air expired being, I believe, condensed before it enters the atmosphere by the trachea, mouth, and lachrymal ducts, especially the latter, which are always comparatively cool. And, in accordance with this view, from the experiments by Messrs Allen and Pepys, it appears even in some instance at least, that one of the warmest of birds, the pigeon, consumes, in relation to its bulk, less oxygen, or produces less carbonic acid, than a quadruped, the Guinea pig, the temperature of which is several degrees lower.
[5] Haller, speaking of the great sympathetic nerve, which in man is so amply provided with ganglia, says, "In postire notabilibas ramis paucos edit. Neque reminisci me alicuaus momenti truncto vidisse qui ad nervum octavi parvis accedereat; et si ejusmodi nervi illustribus vors visus sunt." —Element.
[6] Physiol. iv. 260. And, according to Sir Charles Bell's view of the nervous system, none of the respiratory nerves are ganglionic nerves. Sir Everard Home (Phil. Trans. 1835, p.257), has endeavoured to associate the production of animal heat directly with ganglia, but the instances he has adduced seem liable to great objection; and the fact that the great sympathetic nerve in birds, is comparatively little developed, even less than in some reptiles, and destitute of large central ganglia, such as the semilunar in the mammalia (at least in every instance in which I have carefully sought for them, I have been unsuccessful), seems fatal to his hypothesis.
March 26, 1835. William Thomas Brande, Esq., Vice-President, is the Chair

The author had occasion to observe, many years ago that the Bonito (Thunnus pelamys, Cuv.) had a temperature of 99° Fahr. [37.2° C] when the surrounding median was 80°5 [sic] [26.5° C], and that it, therefore, constituted an exception to the generally received rule that fishes are universally cold-blooded.

Having found that the gills of the common Thunny of the Mediterranean (Thunnus vulgaris, Cuv.) were supplied with nerves of unusual magnitude, that the heart of this latter fish was very powerful, and that its muscles were of a dark red color, he was led to conjecture that it might, like the Bonito, be also warm-blooded; and this opinion is corroborated by the testimony of several intelligent fishermen. The author’s endeavours to extend this analogy to other species of the same family, which, according to the reports of the fishermen of whom he made inquiries, have a high temperature, and in whose internal structure he noticed similar peculiarities as in the Thunny; namely, very large branchial nerves, furnished with ganglia of considerable size. In this respect he considers that in these fishes the branchial system of organs makes an approximation to the respiratory apparatus of the Mammals, and that it probably contributes to the elevation of temperature, resulting from the more energetic respiration which he supposes to be exercised by these organs. He, however, thinks it not improbable that these fish may possess means of generating heat peculiar to themselves, as of which at present we have no adequate idea. He conceives that the situation of the kidneys, of which a considerable portion is even higher than the stomach, and posterior to the gills, and which are of large size, and well supplied with nerves and blood-vessels, may possibly act a part in the production of an elevated temperature; but, on the whole, he is disposed to ascribe the greatest share of this effect to the superior magnitude of the branchial nerves.
V. Miscellaneous observations on animal heat.

By JOHN DAVY M.D., F.R.S., L. and
Received November 2. Read December 14, 1847.

I. On the Temperature of the Pelamides (Pelamys Sarda [sic], CUV. and VAL.).

Fishes generally are commonly considered as cold-blooded. In a work published in 1839, I have stated particulars tending to show, that this commonly received opinion is not universally correct, and that fishes of the genus Thynnus, with some others of the Scoller family, may be inferred to be an exception [1].

As this inference was founded chiefly on the reports of fishermen, it appeared very desirable to determine by actual thermometrical measurement what is the exact temperature of fishes of this family.

Hitherto, although watching for opportunities, and promised the aid of friends favorably situated, I have not been able to make any observations of the kind required, excepting on one species of these fishes, the Pelamides, the Pelamys Sarda [sic] of CUVIER and VALENCIENNES. The Pelamides, like most of its congeners, is migratory in its habits. In the early part of summer it appears in the sea of Marmora and the Bosphorus, and in August in the Black Sea, from whence, after spawning, it returns in September and October, on its passage to the Mediterranean. It is caught in the same manner as the Tunny.

In June 1841, whilst at Constantinople, I visited a fishing station for this fish, in an inlet of the sea of Marmora, and was present when a small capture was made, enabling me to ascertain the temperature of four specimens. This was done the instant they were taken out of the water, being in a boat alongside the net, by introducing a thermometer with a projecting bulb, through a small incision, into the muscle of the back, about inch and a half [4 cm], and immediately after into the cavity of the abdomen. In three instances, the thermometer in the back rose to 75° FAHR. [23.9° C], is one to 74° [23.3° C]; in all, in the abdomen it rose to 73° [22.8° C]. The Pelamides were of moderate size, between two and three feet long. The air at the time was 71° [21.7° C]; the sea at the surface 68° [20.0° C], but probably at the depth from which the fishes were taken, it was a few degrees lower the descending current of the Bosphorus then being, where coldest, at 62° [16.7° C].

Supposing that the water from which they were taken was 62° [16.7° C], and it might have been lower, as the Pelamides swim in deep water, the temperature of this fish would appear to be about 12° [7.1° C] above the medium in which it swims, and at least 7° [3.8° C] above that of the surface.

This result seems in accordance with the inference, that all fishes are not cold-blooded. In the work already referred to, reasoning from the smaller size of the respiratory nerves of the Pelamys Sarda [sic] compared with those of the Tunny, I offered the conjecture that its temperature would be found less than that of the Tunny, and somewhat higher than that of fishes of other orders with still smaller respiratory nerves, a conjecture which the observations described may be added to as confirming.

In connexion with their temperature, my attention was directed to the blood of these fishes. I have been able to examine it only in three instances, and that partially, viz. the Sword-fish, the Pelamys Sarda [sic], and the common Tunny. Considering the great difficulty there is in obtaining the subjects for experiment under favorable circumstances for examination, imperfect as were my results, I am induced to offer them now.

The Sword-fish appears to abound in blood in the Pelamides, and the Pelamides less than the common Tunny, and accordingly the muscles of the former two are of a much lighter color than those of the latter.

The blood of the Tunny is very rich in red particles; this is indicated not only by its appearance, but also by its specific gravity, which I have found as high as 1.070. The blood tried was taken from a fish, caught in the sea of Marmora, that weighed between two and three hundred pounds [91 to 136 kg].

The blood of the Pelamides appears to be less rich in red particles than that of the Tunny, but more than that of the Sword-fish; I have not ascertained its specific gravity. The specific gravity of the blood of the Sword-fish I have found to be 1.051, the fish from which the blood was taken was caught in the Bosphorus, in the month of December, and was of large size.

Under the microscope the appearance of the red particles of the blood of these three fishes is very similar. They are commonly thin oval discs (very soft), containing oval nuclei; a
few circular discs are intermixed with them. The medium dimensions of those of the Polamides were about 1/20000th of an inch by 1/30000th [12.7 by 8.5 μm]; of the Sword-fish about 1/3000 by 1/40000th [8.5 by 6.4 μm]; and of the Tuna, about 5/80000th by 3/8000 [15.9 by 9.5 μm].

That the red particles constitute that portion of the blood which is chiefly concerned in the production of animal heat, is now generally admitted. What a contrast appears, in comparing the blood of the fishes under consideration, with that of some of the colder, especially of the cartilaginous kind, in which it is very small in quantity, accompanied by a proportionally diminutive heat, and poor in red particles! [we are not sure why this comment deserves an excision mark] the blood of the Squaleus Acoustit [sic] I have found to exceed in density only a little its serum, one being of the specific gravity 1.050, the other of the specific gravity 1.027.

Whether the peculiar constitution of the red particles operates in any way in promoting their union with oxygen, seems to be deserving of consideration. It may be thrown out as a conjecture, that the circumstance of their possessing nuclei may have an effect of the kind, supposing, which is possible, the blood-corpuscle and nucleus, or containing and contained part, to be in the electrical relation to each other of positive and negative. If it be objected to this, that as regards nuclei as well as size, there is an analogy between the blood-corpuscle of fishes, birds and reptiles, the temperature of which commonly is so very different, it may be answered, that in all three classes such a constitution of blood-corpuscle may be designed for the same end, and that birds partly owe their high temperature to it: and that in reptiles and fishes, in most of which the proportion of red particles is small, were the constitution of blood-corpuscle different, it would be inadequate to perform the part required of it. III. On the temperature of man in advanced age [not included here]

III. On the effect of air of different temperatures on animal heat [not included here]

[1] Researches, Physiological and Anatomical, vol. i. p. 278. [Neither the Royal Society nor we have been able to locate this paper]

December 21, 1843. James Walker, Esq., Vice-President, in the Chair.

The reading of Dr. Davy's paper, entitled, "Miscellaneous observations on animal heat," was resumed and concluded.

The author, in the first section of this paper, after advertsing to the commonly received opinion that all fishes are cold-blooded, and noticing an exception, as he believes, in the instance of certain fishes of the genus Thynnus and of the Scomber family, describes the observations which he made whilst at Constantinople, on the temperature of the Pelamys Savda (sic), when, in three different experiments, he found its heat to exceed that of the surface-water by 7°, and of the deep water probably by 12°. He adds some observations and remarks in peculiarities in the blood of the same fish, of the sword-fish and of the common tunny, which he supposes may be connected with their temperature, and throws out the conjecture, that the constitution of their blood-gllobule, formed of a containing and contained part, namely the globule and its nucleus, may be to each other in the electrical relation of positive and negative, and may thereby act with greater energy in separating oxygen in respiration.

In the second section, on the temperature of man in advanced old age, he relates a number of observations made for the purpose of determining the actual heat of persons exceeding eighty years of age, the result of which, contrary to the commonly received opinion, is, that the temperature of old persons, as ascertained by a thermometer placed under the tongue, is rather above than below that of persons of middle age; and this he thinks may be explained by the circumstance, that most of the food used by old persons is expended in administering to the function of respiration.

In the third section, on the influence of air of different temperatures on animal heat, after alluding to what he had witnessed of the rise and fall of the temperature of man on entering the tropics, and, within the tropics, on descending from a cool mountainous region to a low hot country, he adds some observations to show that in this country similar changes of temperature take place in a few hours in breathing the air of buildings artificially heated; and, in confirmation, he describes the results of many observations made on an individual in the very variable climate of Constantinople, where, between March and July, in 1841, the thermometer ranged from 31° [-0.6°C] to 94° [34.4°C].

In the fourth section, he describes the observation which he made to determine the effect of moderate exercise, such as that of walking, on the temperature of the body, tending to prove, that while it promotes the diffusion of temperature and produces its affection to the extremities, it augments very little, if at all, the heat of the central and deep-seated parts.

Fig. 17. This drawing of a juvenile (about six months old) bluefin tuna is taken from Kishinoeye (1923).

50
Acknowledgments

Most importantly, we must acknowledge the major contribution made by Elisabeth Nimi with the translation. The fact that her native tongue is German was an invaluable aid in understanding the details and nuances of the sometimes interminably long sentences. We thank Ian Smith for creating the schematics. We thank those members of the fishing industry and government agencies that have been helpful in obtaining specimens for our analysis of the anatomy of visceral *retzi*. Billy Raymond of Cape Ann Tuna, Gloucester, MA; Mark Godified of Fiontico Brothers, Gloucester, MA; Capt. Bill DeGrazia and crew (Stretch, Jamie), Harwich, USA; Robert Conrad and his crew, Nova Scotia, Canada; Brad Chase and his crew, Division of Marine Fisheries, MA, USA; Dick Stone, NFMS-USA. We also thank Ron and Marilyn Fudge who allowed the use of their garage as a tuna mortuary. Others helped considerably with taxonomic problems in a variety of languages: Christine Flegler-Balon, Eugene Balon, Bill Eschmeyer, and Bruce Collette. Jim Ballantyne, Esta Spalding, and David Neakes proofread versions of the paper. Tracey Dart, Royal Society of Edinburgh was of invaluable assistance in learning about John Davy and his papers. Catherine Norton, Marine Biological Laboratory Library gratefully loaned us the journal volume that contained the original copy of the Eschricht & Müller paper and supplement. EDS thanks the many individual tuna that have been a continued source of inspiration and have allowed him to combine his vocation with his avocation. NSERC has provided funding to EDS for many tuna projects over the years.

Fig. 18. Drawing of a dissection of a bluefin tuna, lateral view taken from Kishinouye (1923). The skin, anterior portion of the hypaxial lateral muscle, and part of the gills and operculum have been removed, exposing the cutaneous vascular system and the viscera. The radiating vessels on the surface of the liver can be seen, and the drawing also shows how liver envelopes the rest of the viscera.
References cited

Dickson, K.A. 1994. Tunnas as small as 207 mm fork length can elevate muscle temperatures significantly above ambient water temperature. J. exp. Biol. 190: 79-93.

Stevens, E.D. & A.E. Dixon. 1982. Energetics of locomotion in
9. Facsimile of the original text of the Eschricht & Müller paper on tuna *retia*

Fig. 19. The drawing below is an enlargement of plate III, Fig. 4 of the original. It shows the *retia* and their branches the coeliac artery. It also shows the large nerve that runs beside the artery and its branches into the *retia*. A = artery, B = hepatic branches of the artery, C = branches of the artery into the *retia*, D = vein. E = visceral portal vein branches which come from the organs of the digestive system and enter the *retia*. F = arteries which leave the *retia* and lead to the organs of the digestive system.
Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin.

Aus dem Jahre 1835.

Berlin.

Gedruckt in der Druckerei der Königlichen Akademie der Wissenschaften.

1837.

In Commission bei J. Dümmler.
Über
die arteriösen und venösen Wundernetze an der Leber
und einen merkwürdigen Bau dieses Organs beim
Thunfische, *Thynnus vulgaris*.

Von
Hrn. ESCHICH'T und Hrn. MÜLLER.

[Mittheilung von dem Letzteren in der Akademie der Wissenschaften am 20. Juni 1835]

Mit einigen neueren Zusätzen.

I. Veranlassung der Untersuchung.

Wie lange bekannt auch die Thunfische in der Geschichte der Fischereien
sind, so ist doch die Naturgeschichte derselben bis auf Cuvier an Dunkel-
heiten und Verwechselungen reich gewesen und die anatomische Eigen tüm-
lichkeiten derselben in der Ordnung der Scromberoiden sind größentheils
bis jetzt unbekannt geblieben. Aristoteles hatte zwar schon Thiere dieser
Familie untersucht, und die außerordentlich lange und enge Gallenblase
seiner Amia (*Pelorhine sarcola*) entdeckt (1), mit welcher die Gallenblase der
Thunfische (*Thynnus vulgaris, alakonga*) nach Cuvier's (2) Beobachtungen
übereinstimmt. Eine allgemeine sehr unvollständige Kenntniss von der Form
und Lage der Eingeweide und von den Eigen tümlichkeiten des Skelets ist
indeed das einzige, was wir von der Anatomie dieser Thiere kennen. Die phy-
siologischen Verhältnisse dieser Familie sind in mehr als einer Hinsicht merk-
wärdig. Man denke nur an die regelmäßigen Wanderungen, über welche
freilich noch vieles zu untersuchen übrig bleibt. Noch eigen tümlicher ist
die hohe eigene Temperatur der Thunfische, auf welche ganz vor Kurzem

(2) *Hist. nat. des poissons.* T. VIII, p. 66. 125.

Physikal. Abhandl. 1835. A

(1) L'Institut, Journal général des sociétés et travaux scientifiques, N. 168.
an der Leber des Thunfisches u. s. w.

Er rathe die Leber von Delphinsmykenonen nachzusehen, wo dasselbe Verhältnifs ihm sehr deutlich zu sein scheine.

das Blut in die Leber sich verbreitet. Diese Bildung ist einzig in der Tierwelt und ist um so merkwürdiger, als sie allen bisherigen Ideen über den Zweck der Wundernetze an verschiedenen Arterien und Venen entgegen scheint. Die Wundernetze an der Leber der Thunfische sind aber zusammengesetzter als alles, was wir bis jetzt von den Wundernetzen der einzelnen Gefäße bei den Wiederkäuern, Taigigraden, Stenops, Delphinen u. a. wissen. Denn einer der mehrfachen größeren Wundernetze an der Leber des Thunfisches besteht allein schon aus vielen Hunderten von Röhren.

Ehe ich zur genauern Beschreibung der Leber und der Wundernetze des Thunfisches übergehe, muß ich eine kurze Beschreibung der Verdauungs- eingeweide dieses Thieres vorausschicken.

II. Allgemeines von den Verdauungsorganen des Thunfisches.

Der Magen des Thunfisches hat III. Fig. t. K. ist ein langer conischer, bis in den hinteren Theil der Bauchöhle ragender Blind sack von fleischigen Wänden, die unmittelbare Fortsetzung des Schlundes. Das blinde stumpf spitze Ende sieht nach hinten. Der pylorus befindet sich am oberen Seiten theile des Sacks. Die pars pylorica des Darms, worin die Stämme der appendices pyloricae (N) einmünden, liegt vor dem Magen, die appendices pyloricae theils vor dem Magen, theils links von demselben. Der Darm steigt von der pars pylorica anfangs vorwärts unter die Leber, biegt sich dann um und steigt rückwärts bis zur Länge des Magens, dann wieder vorwärts bis unter die erste obere Biegung, nun wieder rückwärts, dicht an dem letzten aufsteigenden Theil bis zum After, ohne seinen Durchmesser zu verändern. Die Milz (S) ist lang und schmal und liegt zwischen dem ersten absteigenden und
dem wieder aufsteigenden Theil des Darms. In Hinsicht der sehr zahlreichen Bündel der *appendicis pyloricae* und ihres Bases verweise ich auf die Abbildung und Beschreibung, welche ich in der Schrift *de glandularum structura* p. 64 Tab. VII. Fig. 4. 5. gegeben.

Die Leber bildet drei platte Hauptlappen, wie schon Cuvier angiebt, einen mittleren (G) und zwei seitliche (F.III). Im allgemeinen von dreieckiger Gestalt, sind sie bis und da eingeschnitten, wodurch Nebenlappen entstehen; die Nebenlappen sind indes bei verschiedenen Individuen durchaus ungleich und ihre Zahl unconstant. Die drei Hauptlappen der Leber hängen durch dünne lappig Streifen von Lebersubstanz zusammen; überdies verschnitt der mittlere Lappen mit dem linken an seiner Basis ganz; wie dem auch diese zwei Lappen nur einen gemeinsamen Lebervenenstamm haben. Die Gallenblase (I) ist ein sehr langer, bei kleineren Thunfischen selbst gegen 1 Pufs langer, enger Kanal, mit untern blindem Ende. Ihre Länge entspricht der Länge des ersten absteigenden Theiles des Darms, an welchem sie sauligt, und ihr blindes Ende reicht bis nahe zum Aftor. In zweien Fällen war ihr Ausführungsangang, da wo er die Lebergeränge aufnimmt, etwas erweitert. Die Einmündung des Gallenganges in den Darm befindet sich an der Stelle, wo der letztere die fünf Stämme der *appendicis pyloricae* aufnimmt. Lage und Zusammenhang der Verdauungseingeweide sind in Fig. 1. Taf. III. abgebildet.

III. Strahlenförmiger Bau der Lebervenen. Wundernetze des Pfortadersystems.

oder spindelförmig sind, so ist auch das Gane, wo es auf der Leber aufsitzt, etwas zusammengezogen, der schmalen Basis der Büsche1 entsprechend. Der im Stiel des Wundernetzes liegende Gefäßstamm zerfällt sogleich in eine Menge von Ästen, diese wieder in kleinere Zweige, so daß nun die Hauptmasse des Wundernetzes viele Hunderte nebeneinander liegende, meist gestreckte Röhren von \(\frac{1}{2} \) Linie darstellt, welche hier und da untereinander anastomosieren und alle die Richtung gegen die Leber nehmen. Bläst man die Gefäße im Stiel auf, so schwellen sie verschiedenen Theile des Wundernetzes auf, deren Röhren von jenen Gefäßen ausgehen. An der Basis hängen die Röhren wieder, in größere sich sammelnd, auf das mannigfältigste zusammen.

Vom Magen gehen drei Gefäße zu den Wundernetzen, eines an der rechten Seite des Magens, eines an der linken, ein drittes auf der hintern Fläche. Ein starker Gefäßstamm tritt von der Milz zu einem besonderen Wundernetz und viele Blutgefässe kommen von den \textit{appendices pyloricae} und dem Darm, um sich einzeln in das größte aller Wundernetze einzusenken.

Diese bilden eine ganze Reihe über das \textit{pars pylorica} des Darmes.

Die Wundernetze des linken Leberlappens sind mehrere Büsche1, zwei größere und drei kleinere Büsche1. Von den größeren enthält der eine das
Blut von der hintern linken Seite des Magens, die anderen von den appen-
dices pyloricae, von letzteren noch mehrere kleinere Venen. An der concaven
Seite des Lebers liegt noch ein sehr starkes, dickhäutiges Gefäß, welches
auch thiefs in der Leber sich verzweigt, thiefs mit der Basis der Wunder-
netze zusammenhängt. Es ist in Taf. II. 7. abgebildet. Dieses Gefäß, dessen
Ursprung an dem letzten Präparat nicht ermittelt werden konnte, weil der
Stamm beim Herausnehmen der Eingeweide von anderen Gefäßen des Rump-
fes abgeschnitten werden, thiefs sich in zwei Äste, einen der an der concaven
Seite des rechten, den andern, der an der concaven Seite des mittlern Leber-
lappens und des mit ihm verbundenen linken Leberlappens hergeht. Blatt
man diese Gefäßstämme auf, so schwellen die Wundernetze auch an. Da aus
den Wundernetzen thiefs viele Zweige unmittelbar sich in der Leber ver-
breiten, aber auch die letzterwähnten Gefäßstämme sowohl in der Leber als
in den Wundernetzen sich verzweigen, so wurden diese Gefäße noch räth-
selhaften. Ist jene Stamm Arterie oder Vege? ist er ein Stamm der Pfört-
ader, der sich aus den Wundernetzen wieder bildet und sie untereinander in
Communication setzt? aber woher dann das abgeschnittene Hauptgefäss, in
welches sich die beiden Äste verziegen. Nimmt dies vielleicht, fragte ich
nicht, Venen des Rumpfes oder der Geschlechtstheile auf, die an den Wun-
dernetzen keinen Antheil nehmen, aber doch ihr Blut in die Pförtader ergie-
ßen? Dagegen spricht die Stärke der Wände an diesem Gefäßstamm und seinen
Ästen. Dies so wie die ganz außerordentliche Stärke der des Gefäßs be-
gleitenden Nerven blieben mir räthselhaft. Um darüber ins Klare zu kommen,
mußte ein neuer Thunfisch und die Gefäße in situ untersucht werden.

Die vorhergehenden Beobachtungen über die Leber und die Wunder-
netze des Thunfisches wurden mit dem letzten Abschnitt der Abhandlung und
den Tafeln I. und II. der Königl. Akademie der Wissenschaften am 29. Juni
1835 mitgetheilt. Neue Materialien, die sowohl in Copenhagen als hier ge-
wonnen wurden, veranlaßten seither noch weitere Aufschlüsse, als sie unsere
gemeinschaftliche Untersuchungen bisher ergeben hatten. Die späteren
Ergebnisse, bestehend aus neuen und wichtigen Mittheilungen von Herrn
Eberhrtt und aus den Resultaten der Untersuchung eines zweiten hier
angelangten Thunfisches sind in den zwei nächsten Abschnitten enthalten.
Die gemeinsame Angelegenheit war uns, nachdem ich meinem Freund im
Herbst 1835 in Copenhagen persönlich über die Wundernetze der Pförtader
Physikal. Abhandl. 1835.
Eschricht und Müller über die arteriösen und venösen Wundernetze

(beitrag zur Anatomie der Thunfischleber von Herrn Eschricht.)

Der Thunfisch, dessen Leber zu folgender Untersuchung benutzt wurde, kam am 29. September 1835 in Copenhagen an. Er war (angeblich am 27.) bei Helsingör in einem großen Fischernetze gefangen worden, das er großenteils zerrissen hatte. Sein Gewicht wurde auf 400 Pfund geschätzt,
sein Länge betrug von der Sinoautze zum Schwanzende 8' 10", zum Rande des Operculum 2' 2½", sein Umfang, wo er am größten war, 4' 2½". Er war männlichen Geschlechts (wie sich später ergab).

Es wurde die Bauchhöhle weit aufgeschnitten bis ans Pericardium, und, da die Lebermasse sehr weich war, so daß sie bei dem Anfassen leicht rief, nahm man sich mit vieler Vorsicht den Hauptästen ihrer Gefäße, denen am leichtesten anzukommen war, und Herr Ibsen injizirte die zwei großen Lebervenenstäme, die dicht am Pericardium eingeschnitten wur- den, mit grüner Masse; einige Arterienstäme, die an der rechten Seite der Leber neben mehreren Pfortaderzweigen verliefen, mit rother, und mehrere Pfortaderzweige mit gelber Masse. Auch wurden die Gallengänge von dem Ductus cysticus aus mit weißer Masse injizirt, allein mit wenigem Erfolg.

Die Injectionsmassen waren sämmtlich aus gefärbrtem Lein bestehend. Es dauerte diese Arbeit an dem colossalen Thiere von 1 Uhr Mittag bis in den Abend hinein, und da unterdessen die Leber noch viel mürber geworden war, wurde sie herausgenommen und in starkem Weingeist aufbewahrt. Einige Tage später versuchte Herr Ibsen wieder noch mehrere Zweige zu injiziren, was jedoch nur einen unvollkommenen Erfolg hatte. Die Leber lag darauf mehrere Wochen im Weingeist und wurde erst untersucht, nachdem die Haut längst zum Austopfen benutzt, das Fleisch aber in sehr vielen Portionen als eßbar verteiht war. Die Breite der Leber betrug 2' 3½", von vorn nach hinten 11'.

Die Thunfischleber ist sowohl an dem vorderen convexen, als an dem hinteren etwas concaven Rande mehrfach eingeschnitten und dadurch stark gelappt. Man kann auf jenem Rande 6, auf diesem 4 solcher Lappen unterscheiden, die in verschiedenem Grade getrennt sind, und selbst wiederum mehrere weniger tiefe Einschnitte haben, oder mit kleineren Anhängen ver- sehen sind.

Die obere Leberfläche ist im Ganzen genommen convex; die untere etwas concav. Auf dieser unteren Fläche zeichnen sich einige kegelförmige Massen von den eigentlichen Lappen sogleich aus. Es sind deren 8. Die 6 größten stehen paarweise und können als rechtes, mittleres und linkes Paar unterschieden werden. Jedes dieses Paares besteht aus einem vorderen und einem hinteren Regel, die an ihrer Basis mehr oder weniger verbunden
Eschricht und Müller über die arteriösen und venösen Wundernetze

sind. Außerdem aber finden sich zwischen dem linken und dem mittleren Paare 2 nicht gepaarte kleinere Kegel.

Wo die Kegel mit ihrer Basis auf der unteren Leberfläche ansitzen, kann man mit einem Spatel zum Theil zwischen ihnen und der eigentlichen Leber eindringen, wenn man bloß etwas Zellengewebe entfernt. Sie sitzen also nicht mit ihrer ganzen Basis, ab sich kiemt in die Lebersubstanz verlängert, an; der Umkreis derselben ist nur contiguous damit, nicht continuous.

An der Anheftungsstelle der Kegel ist die Leber selbst ungemein dünn, an meinem colossalen Exemplare höchstens 3"" dick, Diese dünnen Stellen der Leber lassen sich auf der obern Leberfläche nicht unterscheiden, auf der untern Fläche aber erscheinen sie als Vertiefungen, die sämtliche Kegel umzussen, und mit einander mittelst schlanker Gänge zusammengedrückt. Sie bilden die Leberpforte.

Unter den Gallengängen ist der Ductus choledochus ziemlich eng, noch mehr aber sein einer Zweig, der D. cysticus, obgleich dieser in eine enorme (trocken 2'"" lange) Gallenblase übergießt, die längs der Mittelliste des ganzen Unterleibs liegt, so daß sie beim Aufschneiden des Unterleibes mit Noth entging beschädigt zu werden. Der D. hepaticus wechselte in seiner Weite mehrmals und sehr bedeutend ab, und verlief quer über die untere Leberfläche, sich in der Pforte für die verschiedenen Leberlappen verständend. Auffallend war der Verlauf seines einen Zweiges zwischen den beiden mittleren Kegeln, waselbst er von der diese verbindenden Mittelsubstanzen brückennartig bedeckt wurde.
In der Leber scheinen die Leberpapillen hauptsächlich dem Tractus der Arterienzweige zu folgen; doch sind sie in der Tiefe, wegen ihrer dünnen Wandungen, sehr schwer zu verfolgen, und ihre Injection war nur sehr unvollkommen gelungen.

Die Pfortader wird aus sehr vielen kleineren Zweigen gebildet, die in die Kegelepithelen hineintreten. Diese Zweige kommen hauptsächlich von den Verdauungsorganen, vielleicht auch, wie sich vermuten läßt, von anderen Theilen der hinteren Körperhälfte (1). Die drei vorderen der gepaarten Kegel scheinen vorzugsweise Eingeweideblutader, die hinteren sowohl Venen der Eingeweide als der umliegenden Theile aufzunehmen. Der Eintritt des letztern Blutes, also in die hinteren Kegel, geschieht durch viele Stämme, z. B. 14-16 für die hinteren mittleren Kegel; jeder dieser Stämme wandelt sich aber bald in eine plötzliche Masse um, dem Anschein nach einen Theil der Lebermasse.

Schon vor der Injection hatte die Oberfläche der Leber zum allernächst Theil, nämlich überall an den Kegeln und an der convexen Oberfläche, ein gestreiftes Aussehen, wie es mir schon vor langer Zeit an einer in Spiritus lange aufbewahrte Thunfischleber aufgefallen war, und wodurch im Grunde diese Untersuchungen zuerst veranlaßt wurden. Nach der Injection wurde dieses auf einmal ganz klar. Die Arterien waren roth, die Pfortader gelb, die Blutader grün, die Gallengänge (sehr unvollkommen) weiß angeführt.

(1) Diese Vermuthung, die ich theile, hat sich an dem letzten Thunfisch nicht bestätigt.
Nachdem mehrere Einschnitte in die Substanz gemacht und viele Ver-
suche angestellt worden, die einzelnen Stämme dorthin einzuleiten, ergab
sich Folgendes.

Bau der Kegel. Sie sind wahrhaftige Corpora mongolica, indem
sie nur aus Gefäßgeflechten der Pfortader und der Pulsumen
bestehen. Diese Gefäße von beiderlei Blutgefäßen sind aber von ein-
ander durchaus getrennt, so daß die Injektionsmasse nirgends aus jenem
in dieses System gedrungen war. Die Gefäßgefäße bilden ferner keine
Zellen, sondern nur sehr viele lange, ohngleich gleich breite Röhren (etwa
1/3 breit) (alle Messungen nur nach dem Augenmaß genommen), die ziem-
lich gerade und mit der Axe der Kegel parallel durch deren ganze Länge
verlaufen. Dies ist mehr oder minder überall die von der Oberfläche der Kegel,
als auch bei Einschnitten in dieselbe. Bei Querdurchschnitten nehmen die Schnittflächen
sich zickzackformig aus durch die Menge ohngleich gleich starken Löcher der
der durchgeschnittenen Röhren. An mehreren Stellen weichen jedoch die
Röhren von diesem geradlinigen Verlaufe ab. So namentlich um den oben
erwähnten großen Nervenstamm herum, welcher sich nur wenig in dem Kegel
selbst verzweigend, auch ohngleich mit der Regelzüge durch die röhrige Sub-
stanz verläuft, und daselbst von einer zellenartigen Schicht eingeschlossen ist,
ohngleich wie die Commissura anterior im Gehirn. Um diese Schicht herum
liegen die Gefäßrohren nicht grade, sondern bilden eine Art Geflecht um sie
herum. An der Basis des Kegel weichen die Röhren ganz und gar von ihrer
Richtung ab, indem sie sich in die Quere legen, sich erst nach dem Centrum
der Kegelbasis wendend, dann aber sich umbiegend und auswärts strahlend,
um alsbald als wahre Gefäßstäbe zu erscheinen.

Die Gefäßrohren der Kegel stehen also sowohl an deren
Spitze als in deren Grundfläche mit Gefäßstämmen in Verbin-
dung, und dies gilt sowohl von den zum Arteriensysteme als von
den zum Pfortadertsysteme gehörigen Röhren. Die Gefäßrohren sind
analogen Wundernetzen überhaupt, zentral aber denen an den Pulsumand
der Extremitäten der trägen Säugethiere. Die Thorifische wären Leviensäumerei
t zu nennen, wenn nicht im Grunde diese Kegel gar nicht wesentlich zur eigent-
lichen Leber gehörten, sondern nur als Divertikel anzusehen waren des
Kreislauf der hinteren Körperhälfe überhaupt, zumal aber al-
lerdings des Kreislaufs in den Verdauungsorganen, wie sich sogleich ergeben wird.

Es entsteht nämlich jetzt die Frage, ob die Blutbahn in jedem Kegel von der Spitze nach der Basis, oder von dieser nach der Spitze hingehende, eine Frage, deren Lösung bei der Untersuchung der Theile im Zusammenhang sich sogleich ergeben muß, jedoch auch durch die Untersuchung der isolirten Leber sich entscheiden läßt.

Die Gefäßäste, mit denen die Kegelröhren an den Grundflächen in Verbindung stehen, liegen in der Pforte, und von hier aus verzweigen sich die Pfortaderstämme in die Leberlappen hinein und nur in diese; also offenbar eine spätere oder zweite Verstärkung. Für die Pfortaderblutfäden wäre also die Frage leicht beantwortet; das Blut tritt aus den Verdauungsorganen in die Spitzen der Kegel, um darin in mannigfache Röhren zu zerfallen, und wiederum in der Pforte zusammenzustreben und sich dann erst auf die gewöhnliche Weise für die Leberlappen zu vertheilen.

Dafs die Blutbahn für die Arterien hiermit übereinstimmend sei, scheine sich vielleicht daraus vermuten, daß auch sonst das Arterienblut mit dem Pfortaderblute einen Weg nimmt, es ist hier aber offenbar umgekehrt. Erstlich kommen die Pfortaderwege von den Unterleibsorganen her, das Arterienblut kann nicht daher kommen, sondern muß dorthin gehen. Zweitens sind die Arterienstämme in den Kegelblitzen ziemlich dunnwandig, die in der Pforte hingegen sind sehr dickhäutig, so daß das Durchschneidern der sogenannten dienen Leberstellen etwas Knorpeliges spürbar läßt. Sie sind Äste der dickhäutigen Arterie in der Leberpforte, und sie verzweigen sich wiederum, die secundären oder wahren Pfortaderäste begleitend, in die Leberlappen hinein. Für diese Aussicht spricht außerdem auch noch der Umstand, dafs jener große Nervenstamm (Vagus) des rechten vorderen Kegels auch nur ein durchgehender ist und zwar so, dafs er an der Basis hinein, an der Spitze heraustritt, in dem Kegel nur wenige Äste von sich schickend, alle mehr nach der Spitze hingerichtet, den letzten an der Spitze ausgenommen, der allerdings in die Kegelspitze hinein zurückläuft.

Die Bluthahn des arteriellen Blutes ist demnach folgende. Die dickhäutige Arterie ist der gemeinsame Stamm der Leberarterien und der Arterien für die Verdauungsorganen. In der Pforte verzweigt sie sich eines-
theils als wahre Leberarterien in die Leberlappen hinein, mit ihren Zweigen denen der Pfortader folgend, anderntheils aber zerfällt sie in unzählige düne Röhren, die in ziemlich stumpfen Winkeln von ihren Hauptzweigen entspringen und darauf (mit den ähnlichen Wundernetzrohren der Pfortaderstämme) die schonmäßige Kegel bilden, um sich wieder, aber in sehr spitzen Winkeln, in Äste zu sammeln (an den Spitzen der Kegel) und ihrer Bestimmung gemäß an die Verdauungsgegend zu treten.

Wie gehen jetzt zur Beschreibung der eigentlichen Leberlappen. Es ist bereits angeführt worden, daß die Lebervenen von der convexen Leberfläche dicht an ihrem hintern Rande entspringen; daß dieselbe Fläche durch die Injection sehr dicht mit grünen (Farbe der Leberblutadern) Streifen bedeckt wurde, die fächerförmig über die ganze Fläche nach dem vorderen Rande ausstrahlen, und daß hiermit seitliche Zweige der Pfortader, der Leberarterien und einzelne der Gallengänge parallel verlaufen. Ferner wurde bemerkt, daß zwar auch an der unteren Fläche, wenigstens an ihrem zunächst der Pforte liegenden Theile, eine ähnliche fächerförmige Ausbreitung statt hatte, sonst aber hier die Leberoberfläche mehr gleichförmig grau-beinlich erschien mit isolierten dunkleren Flecken.

Die Streifen, die sich an der Oberfläche der Leberlappen zeigen, rühren allerdings auch von ziemlich gleichdicken, gerade gestreckten, also röhrenförmigen Gefäßzwiegen her, und namentlich von allen drei Gefäßklassen (besonders aber den Leberblutadern), so viel ich weiß, auch von den Gallengängen. Doch haben diese Röhren eine ganz andere Bedeutung als die der Kegel. Es sind keine Wundernetze. Ihre lineare Form rührt nur daher, daß überhaupt die Leber sehr regelmäßig von der Pforte aus in Unterabtheilungen zerfällt, ohngefähr in folgender Form:

Zunächst der Pforte ist die ganze Lebersubstanz allerdings röhrenför mig. Von hier aus verästeln ziemlich Zwiegzweige sich auch nur schwach, verbreiten sich aber erst nach dem vorderen Rande hin, dann gebogen nach der unteren Fläche zu. Auf diesem Wege tritt aber mehr und mehr eine körnige Substanz zwischen die Gefäßzweige, und zunächst an der unteren Fläche und dem vorderen Rande zu macht diese Substanz einen großen Teil des Ganzen aus. Zerreißt man die Lebersubstanz, zuniach an etwas nascherter Stücken, so bricht sie immer parallel mit der angegebenen Riehung, erscheint aber nicht zeilig, wie je Kegel, sondern körnig, durch
an der Leber des Thunfisches u. s. w.

17

Wenn die Natur dieser körnigen Masse genügend erläutert werden könnte, so würden wir beim Thunfisch wohl die erste Leber haben, deren Bau hingänglich ergründet wäre. So bleibt uns aber gewöhnlich eine — oft nur eine kleine — allein leider eine wichtige Brücke übrig, wo wir nicht hintüberkommen können.

Gehen wir also auf einem Umwege jenseits dieser Brücke, und folgen dem zurückkehrenden Linienvorzugs, so sammelt sich dies in zwei große Becken, die auf der convexen Fläche der Leber transversal liegen, ohnmacht des hinteren Bandes verlaufend, und von dort aus ergießt es sich in zwei sehr große Stämme, die abwärts in den venösen Sinus sich ergießen.

So weit reichen die besonderen Mittheilungen von Herrn Eschricht.

V. Verhalten der übrigen Eingeweide und Gefässe.

Eine Beobachtung, die ich zuletzt noch hier an dem zweiten Thunfisch von Montpellier gemacht habe, betrifft eine merkwürdige Eigenthümlichkeit im Bau der Nieren. Die Eingeweide dieses Thieres wurden in situ preparirt, nachdem die Seitenwände des Rumpfes abgeschnitten worden, und hiernach wurde die Zeichnung Tab. III, Fig. 6. entworfen.

Physikal. Anthrop. 1835.

C
Die Nieren des Thunfisches liegen nicht wie bei den meisten Fischen in der Länge der oben Bauchwand, sondern bloß über dem vorderen Theile der Bauchhöhle, und zwar die Hauptmassen, innerhalb des Schultergürtels zu beiden Seiten des Anfangs der Aorta, wo sie aus der Verwachsung der Kiemenvenen entsteht, über dem Schlund und über und hinter den Kiemen. Siehe Tab. III. Fig. 5. Ihr vöreres Ende reicht bis an die vorderen Kiemenvenen und fast bis in die Nähe des Hinterhaupt; die beiden hinteren Kiemenvenen jeder Seite sind schon von den Nieren von oben bedeckt. Von dem Anfang der Aorta bis zu der Stelle, wo rechts und links die großen Arterien für die seitlichen Rumpfwände abgehen, sind die Nieren getheilt und zwischen ihnen liegt der stärkste Theil der Aorta. Von dieser Stelle an verschmelzen die Nieren, vor der Fortsetzung der Aorta als arteria caudalis, mit einander zu einer Masse und von diesem verschmolzenen Theil der beiden Hauptmassen setzt sich die untere Hälfte der Nieren unpaarig und schmilzt an der Mitte der oben Bauchwand noch eine Strecke fort, ohne jedoch die Hälfte der Länge der Bauchhöhle zu erreichen. Der vordere paarige Theil der Nieren ist sehr dick und breit, liegt mit der äusseren und oben Fläche dicht an dem äusseren und oben Theil der inneren Rumpfwandungen und des Schultergürtels an; der schmälere hintere Theil ist hingegen sehr dünn. Die Niere besteht deutlich aus kleinen platten Lappen, wie man besonders an dem oben Theil und an dem hinten schmalen Theil derselben sieht. Dicht vor dem hintern Ende theilt sich die unpaarig gewordene Niere wieder in zwei kurze Endlappen, aus denen jederseits ein Ast des Ureters hervor- geht. Beide Äste vereinigen sich sogleich unter spitzem Winkel zu einem unpaaren Kanal, welcher als eine diaklaste Röhre in der Mittellinie der hintern Bauchwand herein läuft. Nur der Anfang des Ureters der Thunfische ist also doppelt; der durch den größten Theil der Bauchhöhle herabgegehende Stamm ist unpaarig, eine Bildung, die uns noch von keinem Fische bekannt ist. Nach Einführung der Bauchhöhle werden weder die Nieren noch der Ureter sogleich sichtbar. Sie sind durch eine flürobe Haut von der Bauchhöhle geschieden, die man erst wegnehmen muß, um sie zu sehen. Wo diese Haut vor dem unpaarigen Ureter herabgeht, ist sie sehr stark und fest. Mit der untern Wand des hintersten Endes des Ureters ist der Körper der 1 Zoll langen, festen Urinblase verbunden. Die Harnröhre geht hinter dem Mastdarm in den für die Geschlechtstheile und Harnwirkeinge
bestimmten Ausgang über, dessen Mündung, wie gewöhnlich bei den Fischen, hinter dem After liegt.

Die arteria systematis chylopoetici geht mit den starken Nerven der Verdauungsgänge zwischen Schlund und Niere abwärts, kommt rechts vom Schlunde zur concave Fläche der Leber und teilt, Zweigelchen an das Diaphragma und die Umgegend gebend, sich hier in zwei Äste, wovon der eine an der concaven Fläche des rechten Leberlappens, der andere an derselben Fläche des mittleren und linken Leberlappens hergeht. Da wo sie an der Basis der Wundernetze ihrer Lappen berühren, geben sie viele Zweige in die concave Fläche der Leber, arteriae hepaticae, der ganze obere Theil dieser zwei Arterienläste vertieft sich ganz in die Basis der Wundernetze und bildet den C2.

Der Sinus aller Körpervenen, der mit dem Vorhof zusammenhängt, hat links einen sipfelförmigen Anhang. Der Sinus nimmt von unten die beiden Lebervenenstämmen, nachdem sie das Diaphragma durchbohrt haben, auf; von unten und vorn empfängt er eine Vene von der unteren Wand der Kehlgegend, vena jugularis inferior, links und rechts nimmt er die vena cara communes auf, wovon jedes aus einem verdern und hinterer Art entsteht, der vordere Ast liegt an der unteren Seite des oberen paarigen Theils der Niere zwischen diesem und dem Herzbeutel, vena jugularis der hintere durchbohrt den unteren Theil der paarigen Hauptmasse der Niere auf jeder Seite, nimmt Nierenvenen auf diesem Wege, dann auch die Venen des Hodens auf und endigt als hintere Hauptvene der muskulösen Seitenwände vena axillaris oder vena lateralis posterior. Da wo die Fortsetzung der Aorta in den Kanal der unteren Dornfortsätze kommt, tritt kein Venenstamm aus diesem Kanal heraus. Man sieht, daß die Anordnung der Hauptvenenstämme von derjenigen bei anderen Fischen etwas verschieden ist.

VI. Wundernetze bei anderen Fischen.

VII. Bedeutung der Wundernetze.

Die Wundernetze an den Extremitäten der Stenops und Tarsius, der Faultiere, der Ameisenfresser und am Schwanz der letzteren, an der carotis cerebralis der Wiederkäuer, an der arteria ophthalmica einiger Saugethiere und Vögel, am Penis der Vögel, an den venae iliacae und Intercoastalarterien der Delphine, an der sogenannten Carotisdrüse der Frösche sind bekannt (*).

Vrolik disquisitio anatomico-physiologica de peculiaris arteriarum extremis in omnibus animalibus dispositione. Amsterdam 1826.

Masse des übrigen venösen Blutes gelangt, noch Wundernetze durchkreisen soll, kann wohl mechanisch auf die Bewegung des Blutes im ganzen chylopoetischen System zurückwirken, aber das Blut nicht qualitativ für die Verbreitung in der Leber verändern. Letztere Voraussetzung ist nur beim Thunfisch möglich, wo die venösen Wundernetze vor dem Durchgang des Blutes durch die Leber liegen.

Die lymphatiscben plexus und ihr Übergang in Lymphdrüsen, die östlich aus feinerer Verthilung der Lymphgefäße bestehen, liefern eine gute Parallele zu den Blutgefässbildungen, die hier genannt sind. Was sind die Lymphdrüsen anders als Wundernetze der lymphatischen Gefäßge, die zwischen die vasa afferentia und efferentia gelegt sind? Hier sind die qualitativen Veränderungen, die chemische Einwirkung dervervenährten tierischen Oberflächen offenbar der Zweck und ganz dasselbe könnte in den analogen Bildungen der Blutgefässwundernetze der Eingeweide angenommen werden.

VIII. Analogien des eigentümlichen Baues der Lebergefäße.

Erklärung der Abbildungen.

Taf. I.

Convexe Seite der Leber des Thunfisches nach einem Präparat des anatomischen Museums.

A. Sinus der Lebervenen auf der convexen Seite des rechten Leberlappens. a. Stamm, der aus dem Sinus hervorgeht und die Oberfläche der Leber verlässt.
B. Sinus der Lebervenen des mittleren und linken Leberlappens. b. Stamm, der aus dem Sinus hervorgeht.
C. Strahlige Lebervenenäste.

Taf. II.

F. Rechter Leberlappen.
G. Mittlerer Leberlappen.
H. Linker Leberlappen.

Lebervenenäste. Sollten die fraglichen Leberlappen und der Darm von einem großen Squau- less betrüveen, so ist sie doch keinfalls von Squauces cernubus. Die Slaa paht obamain gar nicht auf dem.

d. Pfortaderwieg, der in das Wundernetz führt.
e. Arterie, die aus dem Wundernetz kommt.

Fig. 2. Zusammenhang des Astes der Eingeweidearterie mit der Leber und seinem Wundernetz; seitenansicht.

Fig. 4. Ein Ast der Eingeweidearterie mit den davon abhängigen Wundernetzen; aus der von Copenhagen gesondert injizierten Leber.
a. Arterie. b. b. Leberzweige der Arterie.
c. c. Zweige der Arterie in die Wundernetze.
d. d. Wundernetze.

Fig. 5. Quer durchschnitten eines Stückchens von einem Wundernetz der Thunfischleber.

Fig. 6. Hauptarterienstämme und Nieren des Thunfisches von der Rückseite (etwas verkleinert).

A. A. Oberer parierter Teil der Niere, über dem verdornten Teil der Bauchhöhle dicht hinter und über den Kiemcn.
B. Commisur der parierenden Theile der Nieren.
C. Unterer unparierter glatter, schmaler Theil der Nieren, C' C". Theilung desselben nach unten.
E. Sammengänge. E' E". Gemeinschaftlicher Sammengang, liegt vor der Harnrohre und ist bis zur gemeinschaftlichen Ausmündung davon getrennt. F. Handsarm.
a. Vordere Verzweigung der Aorta, aus dem ersten Kiemensystem a'd'.
b. b. Hinterer Wurzel des Aorta aus den beiden hinteren Kiemensystemen.
c. Stamm der Aorta zwischen den parierenden Theilen der Nieren.
e. Gemeinschaftlicher Arterienstumpf des chylöpoetischen Systems (F Taf. II.). e'. e". Seine beiden Äste (Y' Y" Taf. II.)
f. Arteria axillaris durchbohrt mit der Vena lateralis posterior, die Nieren.
g. Dianeres Fortsetzung der Aorta für die Mitte der Linsen, die links in der Nasen der unteren Dornfortsätze.
h. Vena lateralis posterior.
V. Vena lateralis anterior, irregularis
10. Facsimile of the original text of the Eschricht & Müller paper on shark retia

Nachtrag
zu der Abhandlung der Herren Eschricht und Müller über die Wundernetze an der Leber des Thunfisches.

Über die Wundernetze am Darmkanal des *Squalus vulpes* L., *Acipenser vulpes* Nob.

Müller über die Wundnetze am Darmkanal

des Squalus vulpes L.

Winkel in den Stumm, und zwar von beiden Seiten, so daß das Ganze die vollkommenste Ähnlichkeit mit einer Federfahne darbietet. Das Wundernetz hört unten, wo die Spiralklappe im Darm aufhört, auch auf und hier auf dem Mastdarm haben die Blutgefäße die gewöhnliche Anordnung, die baumförmige Verästelung.
