127-I levels in Ontario bulk tank milk and its association with groundwater, milking management, and other risk factors.

C. Rogerson*, D. Kelton*, V. Osborne¶, J. Levinson§, and S. Hamilton†

*Department of Population Medicine, University of Guelph, Guelph, Ontario
¶Department of Animal Bioscience, University of Guelph, Guelph, Ontario
§School of Engineering, University of Guelph, Guelph, Ontario
†Earth Resources and Geoscience Mapping Section, Ontario Geological Survey, Sudbury, Ontario
Outline

1. Why are we interested in Milk Iodine?
2. Research Objective & Approach
3. Major Results
4. Implications
Why are we interested in Milk I⁻?

• Mammalian nutrient requirement
 o Thyroid hormone component
 • Cell activity regulators

• Narrow margin of safety
 o Tolerable upper level ~3x’s greater than adult requirement
 • 200 vs. 600 mg/d

• Milk & dairy products
 o Leading nutritional source
 o Iodine secreted into milk
 o Levels have been increasing
 • DFO implemented testing and limits
Current Canadian Milk I⁻ Reports:

1) 2011-2013 DFC funded project – Keefe, 2013
 - 12,000 farms
 - Mean BMI = 258, Range <10 to 3,937 ppm
 - 5% of Canadian dairies ship milk with I⁻ levels >500ppm
 - Ontario = highest milk I⁻ levels in country
 - 3/5 high risk areas located in Ontario

2) 2010 Canadian study - Borucki Castro, 2010
 - 501 farms
 - Mean BMI = 304 µg/kg, Range 54 to 1,902 µg/kg

3) 2004-2005 Canadian study - Robichaud, 2006 (Unpublished)
 - 411 retail milk samples (9 provinces)
 - 393 µg/kg mean I⁻ content in retail milk
Risk Factors Identified in Literature

Milk Iodine Level

- Milking Management
- Nutrition
- Water Consumed

*farms continue to have high milk iodine after controlling for iodine in ration and during/after milking, indicating another source exists.
Research Approach

- **Case-Control design**
 - 80 commercial dairy herds
 - Eastern ON (n=58) & southwestern ON (n=22)
 - \([\text{milk } I^-] = \text{normal} (<300 \, \mu\text{g/L}), \text{elevated} (300-499 \, \mu\text{g/L}), \text{high} (>500 \, \mu\text{g/L})\)

- **Farms visited from August – September 2016**
 - Bulk tank milk, groundwater, & ration sampled
 - Risk assessment survey completed

- **Bulk tank milk & water samples tested for I-127**
 - Animal Health Laboratory, University of Guelph

- **Survey information (Excel & Stata13)**

Objectives:
1) Determine \([\text{I}^-]\) in milk sampled from 80 dairy farms
2) Identify risk factors associated with high milk iodine
Current Preliminary Results

- **[Milk I⁻]**
 - Ranged 8 to 1,144 ppb
 - Mean = 284 ppb

- **[H₂O I⁻]**
 - Ranged <6.1 to 2100 ppb
 - Mean = 134 ppb

Figure 1. Frequency distribution of farms according to milk iodine concentrations (ppb or micrograms per liter).

25% of dairies visited produce milk with I⁻ levels above 350 µg/L
Linear Model Results

- I\(^-\) content in water
 - Significant (+) correlation with BMI

- Type of post disinfectant used
 - Post disinfectants \(\leq 5\%\) or \(\geq 10\%\) I\(^-\) significant (+) correlation

- Post-disinfectant coverage goal
 - Full teat + udder base coverage significant (+) correlation

Figure 2. Two-way scatter plot suggesting a positive linear correlation between BMI and I\(^-\) content in water.
Implications for Ontario Dairies

Who is directly impacted by this research:

- Ontario Dairy Producers
- Dairy Farmers of Ontario (DFO)
- Raw milk consistency
- Quality assurance
- Consumer safety
- Maintain marketability
Conclusions & Further Investigations

• Many Ontario dairy producers continue to produce milk containing elevated to high iodine levels

• [Milk I⁻] is influenced by many risk factors
 o Milking Management (Post-dip use & coverage goal)
 o Water Consumption**

Subsequent Investigations:
• Isotopic analysis of iodine-129 (¹²⁹I) and ¹²⁷I/¹²⁹I ratio in samples to fingerprint source of I⁻.
Acknowledgements

This research is supported by:

• Dairy Farmers of Ontario (DFO)
• Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA)
• Ontario Veterinary College (OVC)
Figure 1. Areas at risk of having high milk iodine (>500ppm), colours indicate ranking of regions regarding relative risk weighted by dairy herd population in each region.
Figure 4. Two-way scatter plot suggesting a positive linear correlation between BMI and I^- content in water with farm ID 1 removed (suggested outlier).